
DNS and DNSSEC

Geoff Huston

How can you tell whether a DNS
response is true or not?

How can you tell whether a DNS
response is true or not?

$ dig +short www.commbank.com.au
prd.akamai.cba.commbank.edgekey.net.
e6109.x.akamaiedge.net.
104.116.115.138

How can you tell whether a DNS
response is true or not?

$ dig +short www.commbank.com.au
prd.akamai.cba.commbank.edgekey.net.
e6109.x.akamaiedge.net.
104.116.115.138

Where did this answer come from?
• It references a name associated with an

Akamai cloud product, not the
Commonwealth Bank

• Akamai is used by many folk – not all of
them are honest

• So why should I enter my username and
password into the web page that is found
at this address?

How can you tell whether a DNS
response is true or not?

$ dig +short www.commbank.com.au
prd.akamai.cba.commbank.edgekey.net.
e6109.x.akamaiedge.net.
104.116.115.138

Where did this answer come from?
• It references a name associated with an

Akamai cloud product, not the
Commonwealth Bank

• Akamai is used by many folk – not all of
them are honest

• So why should I enter my username and
password into the web page that is found
at this address?

How ca
n I te

ll if
the DN

S is t
elling

 me li
es?

The Origins of the DNS

• The DNS was created as a replacement for a static list of hosts and
addresses - /etc/hosts.txt
• Which was a list of host names and their IP addresses

• To resolve a name you look up the name in /etc/hosts.txt and use the result

Question: What are the problems with this approach?

localhost 127.0.0.1
example.com 192.0.2.1

The DNS Name Space

is a structured hierarchy:

root

net com org

google example

Root zone

Top Level Domains

Second Level Domains

RFC 1034
RFC 1035

google.com
*.example.com

Potential delegation point

zone

The DNS as a Distributed Database

• Each Zone is served by one or more authoritative servers
• Each server responds to queries
• Responses may be one of:
• The queried data
• A referral to a delegated authoritative server set
• No such data
• No such name

DNS “Resolvers”

• To query this DNS database we use specialised database query
engines that are termed DNS Recursive Resolvers
• A recursive resolver performs a sequence of discovery queries to

establish the authoritative server that can answer the query for this
domain name
• It also uses a local cache to re-use responses for subsequent queries

(these caches are super-important – without local caching the DNS would melt
under the load!)

Resolving a DNS name is far more
complex than it might seem
I want to resolve www.commbank.com.au in the DNS
Which DNS server is authoritative for www.commbank.com.au?
 I don’t know.
 But the servers for commbank.com.au should know
 So lets ask one of them
 Which DNS server us authoritative for commbank.com.au?
 I don’t know.
 But the servers for com.au should know
 So lets ask one of them
 Which server is authoritative for .com.au?
 I don’t know
 But .au servers should know
 Which server is authoritative for .au?
 I don’t know
 But ROOT servers should know

So now lets start the name resolution process…

Resolving a DNS name is far more
complex than it might seem
$ dig www.commbank.com.AU @a.root-servers.net

; <<>> DiG 9.18.11 <<>> www.commbank.com.AU @a.root-servers.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 15415
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 6, ADDITIONAL: 13
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;www.commbank.com.AU. IN A

;; AUTHORITY SECTION:
AU. 172800 IN NS d.AU.
AU. 172800 IN NS q.AU.
AU. 172800 IN NS t.AU.
AU. 172800 IN NS s.AU.
AU. 172800 IN NS r.AU.
AU. 172800 IN NS c.AU.

Resolving a DNS name is far more
complex than it might seem
$ dig www.commbank.com.AU @r.au

; <<>> DiG 9.18.11 <<>> www.commbank.com.AU @r.au
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57200
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;www.commbank.com.AU. IN A

;; AUTHORITY SECTION:
commbank.com.au. 900 IN NS ns-2013.awsdns-59.co.uk.
commbank.com.au. 900 IN NS ns-302.awsdns-37.com.
commbank.com.au. 900 IN NS ns-748.awsdns-29.net.
commbank.com.au. 900 IN NS ns-1037.awsdns-01.org.

Resolving a DNS name is far more
complex than it might seem
$ dig www.commbank.com.AU @ns-302.awsdns-37.com.

; <<>> DiG 9.18.11 <<>> www.commbank.com.AU @ns-302.awsdns-37.com.
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 9009
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;www.commbank.com.AU. IN A

;; ANSWER SECTION:
www.commbank.com.AU. 3600 IN CNAME prd.akamai.cba.commbank.edgekey.net.

Resolving a DNS name is far more
complex than it might seem
• This is an alias, so we now have to resolve the name:
prd.akamai.cba.commbank.edgekey.net.

• But this is also an alias, so we have to resolve the name:
e6109.x.akamaiedge.net

• Finally:

$ dig +short e6109.x.akamaiedge.net.
104.116.115.138

The DNS is far more complex
than it might seem
• Phew!
• That simple name resolution query actually took 13 queries to

discover who to ask and what query name to use, and a final query
for the data.
• What’s going on here?

Understanding DNS Resolvers is
“tricky”

What we would like to think happens in DNS resolution!

Client DNS Resolver

x.y.z?
Authoritative
Nameserver

x.y.z?

x.y.z? 10.0.0.1x.y.z? 10.0.0.1

Understanding DNS Resolvers is
“tricky”

A small sample of what appears to happen in DNS resolution

The DNS and Trust

• When you pass a question to a recursive resolver you naturally
assume that the answer is authentic

i.e. the answer is an accurate representation of the current contents of the zone

• But how can you confirm that this is the case?
• You don’t have a genuine copy of the zone file to compare it to the response
• You don’t know if the response was generated from a cache or directly from a

query to one of the zone’s authoritative servers
• You can’t even tell who provided the response!

The DNS is vulnerable

• It’s in the clear
• So anyone on the wire can tap the DNS transactions

• It’s UDP
• So its at risk from injection, substitution and fragmentation attacks

• Its unprotected
• The DNS works on the principle that if you send a query to the “right” IP

address then you can trust the answer you get back that contains this same
address as a source address

Why attack the DNS?

Because perverting the infrastructure does not require a successful
attack on the host
For example, If you can control the resolution of a DNS name you can:

Coerce an automated CA to issue a domain name certificate using the attacker’s
public key by using a faked DNS response
Then alter the DNS resolution of the target name to the attacker’s site
And use a faked service that passes a TLS test

How can you detect DNS attacks
that alter DNS responses?

How can you detect DNS attacks
that alter DNS responses?
• Use digital signatures in the DNS:
• Associate a public/private key pair with a DNS zone, and use the private key to

generate a digital signature for each zone entry
• Deliver the digital signature along with the DNS response

• A DNS response is authentic if:
• the client can be satisfied that the zone’s private key has been used to sign

the digital signature associated with the DNS response record, and
• the DNS client can be assured that the zone’s public/private key pair is

authentically associated with the zone

• We use a digital signature framework for DNS called “DNSSEC”

How does DNSSEC do “Trust”?

• If we are talking “trust” when should we be talking X.509 public key
certificates as well?
• No, no X.509 certificate is needed or used in DNSSEC

• This entire process is based on the keys themselves
• Its strength lies in the transitive trust model of interlocking keys…

DNSSEC Design Basics

• DNSSEC does not alter the DNS in any way, nor does it alter the basic
query/response protocol
• DNSSEC adds 5 new Resource Record Types:

• RRSIG – the digital signature of a zone resource record
• DNSKEY – the public key(s) used to ”sign” the zone
• DS – the hash of the zones entry key, placed in the parent zone
• NSEC – a spanning record used to sign across the “gaps” in a zone
• NSEC3 – a variant of the NSEC spanning record used to sign across the “gaps” in a

zone

• If a query sets the DNSSEC OK flag then the signature (RRSIG record) is
added to the response (if one exists in the zone)

What’s DNSSEC?

It’s the ability to add digital signatures to DNS responses.
$ dig +dnssec www.potaroo.net AAAA @127.0.0.1

; <<>> DiG 9.18.2 <<>> +dnssec www.potaroo.net AAAA @127.0.0.1
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36348
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
; COOKIE: 037e7ff2970bd29801000000628b47b76d96ecc2d227fae5 (good)
;; QUESTION SECTION:
;www.potaroo.net. IN AAAA

;; ANSWER SECTION:
www.potaroo.net. 6394 IN AAAA 2401:2000:6660::108
www.potaroo.net. 6394 IN RRSIG AAAA 13 3 6400 20320331235230 20220324225230 41284 potaroo.net.
W9CDfQ3nCl35ZuFCIxgz+Rl4f+L8O/RRpJLwpPVq6wMgP5CPpP8sSiQc ySCB5scLFBN5aeqG1/jOBeywVYfp0g==

;; Query time: 0 msec
;; SERVER: 127.0.0.1#53(127.0.0.1) (UDP)
;; WHEN: Mon May 23 18:37:11 AEST 2022
;; MSG SIZE rcvd: 207

response

digital signature

So what?

• If the client can validate this digital signature, then it can be assured
that:
• The response the client received is authentic and complete
• The response is current

• It doesn’t matter how the DNS client learned this response: if the
response correctly validates then the data is a genuine and complete
extract from the authoritative zone file

• If it wasn’t signed and validated then you really can’t tell if the data
has been altered by some intermediary

What about non-existence?
$ dig +dnssec _80_tcp.www.potaroo.net A @127.0.0.1

; <<>> DiG 9.18.2 <<>> +dnssec _80_tcp.www.potaroo.net A @127.0.0.1
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 47442
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
; COOKIE: b6c04852ce47b40901000000628b4b20b3104cdb1bfb9e90 (good)
;; QUESTION SECTION:
;_80_tcp.www.potaroo.net. IN A

;; AUTHORITY SECTION:
potaroo.net. 6018 IN SOA ns1.potaroo.net. gih.potaroo.net. 2022032501 10800 3600 3600000 6400
potaroo.net. 6018 IN RRSIG SOA 13 2 6400 20320331235230 20220324225230 41284 potaroo.net.
oQZTmjoMBb8r8FUiHbp+62ZjSV1aXU9Gl6K28ngh6RXHFPWmzTJIilEA dCkf7fzA3d9ANqm5I5UiMikBRPceFw==
www.potaroo.net. 6018 IN NSEC _443._tcp.www.potaroo.net. A AAAA RRSIG NSEC
www.potaroo.net. 6018 IN RRSIG NSEC 13 3 6400 20320331235230 20220324225230 41284 potaroo.net.
lhP13N+YR6m3dBYLUxfgv8fGsuiF4f14UcpznpyqIevIJyEumLgHtzUV Y6k6MXpiygGqI70KzZidqzAhglVCcQ==

;; Query time: 6 msec
;; SERVER: 127.0.0.1#53(127.0.0.1) (UDP)
;; WHEN: Mon May 23 18:51:44 AEST 2022
;; MSG SIZE rcvd: 396

There are no names between
these two labels

NXDOMAIN digital signature

Query for a non-existent name

What about non-existence?
$ dig +dnssec www.potaroo.net TXT @127.0.0.1

; <<>> DiG 9.18.2 <<>> +dnssec www.potaroo.net TXT @127.0.0.1
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 32884
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
; COOKIE: 660df460a7f4ed0101000000628b49a2d9c0f21dc394dd81 (good)
;; QUESTION SECTION:
;www.potaroo.net. IN TXT

;; AUTHORITY SECTION:
www.potaroo.net. 6400 IN NSEC _443._tcp.www.potaroo.net. A AAAA RRSIG NSEC
www.potaroo.net. 6400 IN RRSIG NSEC 13 3 6400 20320331235230 20220324225230 41284 potaroo.net.
lhP13N+YR6m3dBYLUxfgv8fGsuiF4f14UcpznpyqIevIJyEumLgHtzUV Y6k6MXpiygGqI70KzZidqzAhglVCcQ==
potaroo.net. 6400 IN SOA ns1.potaroo.net. gih.potaroo.net. 2022032501 10800 3600 3600000 6400
potaroo.net. 6400 IN RRSIG SOA 13 2 6400 20320331235230 20220324225230 41284 potaroo.net.
oQZTmjoMBb8r8FUiHbp+62ZjSV1aXU9Gl6K28ngh6RXHFPWmzTJIilEA dCkf7fzA3d9ANqm5I5UiMikBRPceFw==

;; Query time: 143 msec
;; SERVER: 127.0.0.1#53(127.0.0.1) (UDP)
;; WHEN: Mon May 23 18:45:22 AEST 2022
;; MSG SIZE rcvd: 377

NODATA flags

NODATA response
NODATA signature

Query for a non-existent record type

Defined RRtypes for this label

“Signing” a zone

• Generate a key pair
• Add the public key to the zone as a DNSKEY record
• Use the private key to generate signatures for all records in the zone

(RRSIG records)
• Publish the signed zone file
• Pass the hash of the public key to the zone’s parent to publish as a DS

record alongside the NS delegation records

DNSSEC is great! Right?

• We can now tell if a DNS response is authentic or not
• Any effort to intercept a DNS response and substitute something else

will fail on validation of the digital signature
• So if we are worried about the DNS being a covert attack channel

then DNSSEC will fix it!
• So everyone should be using DNSSEC to sign their DNS names – right?

Really?

There are a whole lot of zones the are not signed – like:

www.google.com

www.westpac.com.au

www.telstra.com.au

my.gov.au

Some 90% of all domain names are not signed with DNSSEC
anu.edu.au

Why don’t we use DNSSEC everywhere?

• It depends on your “parent” zone being signed
• If your parent zone is unsigned then nobody can validate the signed entries in

your zone

• Signing an entire zone can a operational nightmare for very large
zones
• Those NSEC records need to span all the gaps in the zone, which means that

you can only sign discrete “snapshots” of the zone file

And validation is no fun

• To validate the key used to generate the digital signature, you need to
retrieve the public key that is associated with this zone (DNSKEY), and
validate that key
• The way DNSSEC associates a key pair with a zone is to place a record

of the hash of the public key into the parent zone file, and have this
DS record signed by the parent zone key
• To answer whether a parent zone key is authentic you need to ask for

the parent’s DS record for this delegated zone label
• And then you need to authenticate the parent zone key, and so on…

DNSSEC Validation
• Retrieve the zone signing key(s) for this zone (DNSKEY)
• Check that the signature matches the couplet of the RRdata and and the zone key
• Check that the signature of the DNSKEY record matches the couplet of the RRdata and and the

zone key
• So if I trust the zone key, then I can trust this record
• Why should I trust the zone key (DNSKEY)?
• Query the zone parent for the Delegation Signer (DS) record
• Validate the signature of the DS record in the parent zone
• Repeat for the parent zone

• Once you get to the root zone check that the key you have retrieved from the DNS matches the
root zone key that you have pre-loaded as your single trust point

DNSSEC Validation

• This is like Authoritative Server discovery in the DNS, but in reverse
• At each level the client retrieves the DS and DNSKEY resource records

and then moves UP a level to the parent zone
• Until it reaches the root zone

• Then if performs the sequence of crypto operations to validate the
chain of signatures

DNSSEC “key chains”

AAAA www.potaroo.net
RRSIG signed by key3

DNSKEY potaroo.net key3
RRSIG signed by key3

DS potaroo.net hash(key3)
RRSIG signed by key2

DNSKEY net key2
RRSIG signed by key2

DNSKEY . key 1
RRSIG signed by key 1
NS net
DS net hash(key2)
RRSIG signed by key1

Root zone

.net zone

potaroo.net zone

Why should I trust key 3?
Because key2 has signed over key3

Why should I trust key1?
Because I have been configured to
regard the root key (key1) as a trust anchor

Why should I trust key2?
Because key1 has signed over key2

DNSSEC Validation can be slow

• For each level the validating client needs to retrieve the DNSSEC-signed DS
and DNSKEY records
• For each record the validating client needs to perform a crypto validation

operation
• E.g. for www.potaroo.net that’s 5 additional DNS queries and 6 crypto

operations:
• DNSKEY potaroo.net @ns1.potaroo.net
• DS potaroo.net @a.gtld-servers.net
• DNSKEY net @a.gtld-servers.net
• DS net @a.root-servers.net
• DNSKEY . @a.root-servers.net

http://www.potaroo.net/

Validation is no fun

• But there’s more!
• Not all crypto algorithms and crypto keys are the same
• Crypto systems that are more resistant to attack tend to use longer

key sizes and more complex crypto algorithms

How “good” is DNSSEC?

• Like all crypto, the choice of crypto algorithms to use to generate keys
and signatures is crucial
• RSA is fast to use, but it has a low crypto strength, so crypto strength

is achieved by using longer RSA keys
• Elliptical Curves are ”denser” – slower to use, but have a higher

crypto strength for a given key size
• DNS over UDP prefers smaller keys!

DNSSEC and UDP
$ dig +dnssec +bufsize=1232 DNSKEY au @2a01:8840:bf::1
;; Truncated, retrying in TCP mode.

; <<>> DiG 9.16.27 <<>> +dnssec +bufsize DNSKEY au @2a01:8840:bf::1
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22246
;; flags: qr aa rd; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1232
;; QUESTION SECTION:
;au. IN DNSKEY

;; ANSWER SECTION:
au. 43200 IN DNSKEY 256 3 8 AwEAAbFKG7+4ErwxorDty/DvZbdzQ4/jVPqvSCKTr4oAOwJ+xFy747Bb …
au. 43200 IN DNSKEY 257 3 8 AwEAAZvV7K54lJPnZUPiOxhY7nNiQ8/V0xSgCHyRxXLWTZGr56TF9gYJ …
au. 43200 IN RRSIG DNSKEY 8 1 43200 20220714000000 20220601223000 34882 au. mg/xwPs …

;; Query time: 36 msec
;; SERVER: 2a01:8840:bf::1#53(2a01:8840:bf::1)
;; WHEN: Sun Jun 05 23:28:51 UTC 2022
;; MSG SIZE rcvd: 1385

Query using IPv6 with the UDP buffer size set to the
current recommended value of 1232

The large response cannot fit in UDP and the query is
retried using TCP, adding 2 additional round trip
intervals to the time to complete the DNS response

Crypto Strength

Algorithm Private Key
size

Public Key Size Signature Size Strength
Equivalence

RSA -1024 1,102 438 259 80

RSA-2048 1,776 620 403 112

RSA-4096 3,3112 967 744 140

ECDSA P-256 187 353 146 128

Ed25519 179 300 146 128

And if we look at post-quantum computing crypto algorithms, then the key
sizes get a whole lot larger very quickly!

DNSSEC and UDP

• DNS usually operates over UDP
• It’s fast and efficient
• But UDP is unreliable when carrying large payloads
• Because IP fragmentation is unreliable

• So the DNS has TCP as a “fallback”
• If the server does not want to send a large response over UDP it sets a

“truncated” flag in a shorter response and the client is expected to open up a
TCP session and resend the query over TCP
• TCP is slower, and takes more resources at both the server and the client

Is DNSSEC worth the effort?

The case for “Yes”
• Too Much Blind Trust.
• We are trusting that the DNS mapping of the name to an IP address is

genuine, trusting that the routing system is passing the IP packets to the
‘correct’ endpoint, trusting that the representation of the name on your
screen is actually the name of the service you intended to go to, trusting that
the TLS connection is genuine, and trusting that the WEB PKI is not corrupted,
to name but a few critical points of trust
• We really have no alternatives – we have no other way of securing the DNS

content
• The DNS is central – if an attacker can corrupt the DNS at will, then many

other kinds of attacks are possible as a consequence

Is DNSSEC Worth the effort?

The case for “No!”
• Its One More Thing to go wrong

• It adds the tasks of secure key management, regular key rotation, synchronisation with
the parent zone

• DNS Responses are larger
• All responses include a digital signature
• DNSKEY responses include the entire key set plus the digital signature
• DNS over UDP has reliability issues with large responses

• UDP fragmentation for large responses is unreliable
• TCP failover on truncated responses is unreliable

• Validation takes additional time
• The validator must separately query for DS and DNSKEY records up the delegation chain

and then perform a sequence of crypto operations

Is DNSSEC Worth the effort?

The case for “No!”
• Sub resolvers generally don’t validate responses anyway!

• They rely on the AD bit being set in the response from the recursive resolver
• Which defeats the entire purpose of DNSSEC!! Its crazy!

• Signalling DNSSEC validation failure is extremely badly handled in the DNS
• There was no defined DNSSEC validation error code, so the standard reused the SERVFAIL

error code
• SERVFAIL as a response code triggers an exhaustive search across all servers

• What’s the realistic assessment of threat?
• As a result, the only threat that DNSSEC protects the stub against is tampering with the

response sent from the Authoritative server to the Recursive resolver, which is a pretty
abstract threat model

If not DNSSEC, then what?

• Nobody “important” seems to be signing here in .au
• No gov.au records

• Not even AFP or ASD!
• Not the federal shop front (my.gov.au), nor the ATO

• No major retail banks
• More generally, few folk DNSSEC-sign their DNS names in .au

• Instead, they are trusting that TLS is robust
• TLS relies on the certificate infrastructure of the web PKI
• So they are trusting that the web PKI is robust

• And this is a problem

PKIs have problems too!

https://www.feistyduck.com/ssl-tls-and-pki-history/

• The problem here is that with so many points of trust and no easy
way of limiting the trust domain each client is forced to trust every
single CA that all of its actions are absolutely correct all of the time
• Every CA in the PKI simply must never lie
• Which is an impossible objective
• And we have no robust certificate revocation mechanism to “unsay”

dud certificates

https://www.feistyduck.com/ssl-tls-and-pki-history/

Certificates are a Failure?

• We persist with long-lived certificates and non-functional revocation
mechanisms, because it’s the path of least resistance
• The problem with certificates that provide a trust window of a few hours, is

that the existing CA infrastructure and the use models of locally stashed
certificates just can’t cope with such an increased intensity of certificate re-
issuance.
• If certificates are incapable of informing a client that they are about to be

drawn into misplaced trust then what exactly are they good for anyway?
• The entire objective here was to answer the simple question: “Is the

service that I am about to connect to the service that I intended to
connect to?” And the problem is that this entire certificate structure can
only answer a question that relates to the past, not the present!

Where to from here?

• We’ve been trying to patch up the PKI system for some decades, and
the result is a system that is not much more robust, but now has a
greater level of external dependencies/vulnerabilities
• DNSSEC could be a more robust approach here but adoption

resistance and operational immaturity count heavily against it
• It’s not a clear and useful “solution” to a current set of opsec issues

• But doing nothing seems to be irresponsible as well!

Where to from here?

I really don’t know!
• I don’t think we can “fix” the certificate system
• Too many points of trust create vulnerabilities for the entire system
• Revocation is broken so mis-issuance and key compromise create persistent

vulnerabilities

• But there is a lot of resistance to DNSSEC
• The single point of all trust is not at all reassuring
• Validation is too slow and too fragile
• Key management is fragile

Questions?

