
#apricot2019 2019 47

What’s the Time?
Geoff Huston

APNIC

#apricot2019 2019 47

Background

• All computers run with some kind of internal oscillator
(called a ‘clock’)
– This clock manages the internal state changes at each cycle of the

central processing unit
– Clock ‘ticks’ are fed to a digital counter
– From this counter the computer can maintain a conventional clock

and maintain the current time

#apricot2019 2019 47

Why is Time useful for a computer?

• To understand when things happen
– Crontab and event scheduling to ensure that a computer performs

certain tasks at precise times

• To understand the relative age of things
– For example, with NFS file systems its vital to understand which file is

more recent

• To understand when things are valid

#apricot2019 2019 47

Security Certificates and Time
These security credentials are
only usable in a defined
window of time

The computer’s local clock is
compared to these dates to
determine whether to trust
this certificate or not

#apricot2019 2019 47

So we need to keep “time”
• But this can be challenging
• Computer clocks are based on quartz crystal oscillation

– Quartz crystal oscillation is only stable if the temperature and excitation
voltage are kept stable. Changes in temperature or voltage will cause
oscillation changes

• Computer time of day clocks rely on counting ticks in a register
– Which is performed by software running in the processor at an elevated

interrupt level
– If the processor runs for extended times at an even higher interrupt level

then clock ticks can be ‘lost’

#apricot2019 2019 47

Example of Computer Clock
Stability

Dave Mill’s 2001 experiment on
looking at clock stability over a one
week period using a Linux PC

https://www.eecis.udel.edu/~ntp/ntpfaq
/NTP-s-sw-clocks.htm

#apricot2019 2019 47

So we need to keep “time”

• We actually want to keep accurate and stable time
– Accurate in that every reference timekeeper keeps the same time

(modulo the spacetime stretch factors of relativity)
– Stable in that the duration of each measured interval is exactly the

same

#apricot2019 2019 47

So we need to keep “time”
What is “time”?
• We all know that time is divided into days, where a ‘day’ is

defined as the duration between successive events when
the sun is at precisely the same elevation in the sky
– But we don’t do this any more because the earth and the sun are

poor timekeepers

• We turned to distant quasars as the reference point
– But we don’t do this any more because we needed even greater

precision

#apricot2019 2019 47

So we need to keep “time”

• We turned to nuclear physics:
– Time is defined using Système International (SI) seconds, defined as

the duration of 9,192,631,770 periods of the radiation emitted by a
caesium-133 atom in the transition between the two hyperfine levels
of its ground state at a temperature of 0K

#apricot2019 2019 47

Keeping Accurate Time

• Not everyone can afford to run their own caesium clock

#apricot2019 2019 47

Keeping Accurate Time
Not everyone can launch their own GPS network
• The GPS satellite constellation is a set of 31

active earth-orbiting spacecraft operated by
the US Air Force

• These spacecraft are equipped with Caesium-
133 reference clocks that broadcast time
signals

• GPS receivers can use triangulation from
multiple satellites and delay measurement to
determine the receiver’s position and provide
an accurate reference time

#apricot2019 2019 47

Distributing Accurate Time
• Not every computer runs their own Cesium Clock or runs a

GPS receiver to maintain accurate time
– But some folk do, and that’s a good thing!

• So what we would like is a way to take this set of highly
accurate reference time sources and provide a mechanism
for others to synchronize their local clock against a
reference source

• On the Internet we use the Network Time Protocol (NTP) to
perform this time synchronization function

#apricot2019 2019 47

NTP Operation

• Time sources are classified by their accuracy
– A Stratum 0 server is a reference clock (GPS or cesium)
– A Stratum 1 server is directly connected to a reference clock source
– A Stratum 2 server receives its time from a Stratum 1 server, and so on

• NTP is a simple clock exchange UDP protocol

1 – client time

1 – client time
2 – server time

T1

T3T4

1 – client time

1 – client time
2 – server time

Client Offset = ½ ((T2-T1) + (T3-T4))

T2

Client Server

#apricot2019 2019 47

NTP UDP Packets
A 48 byte UDP packet is passed between the client and server

The fields in the packet are:

• The header section contains leap seconds, NTP version, NTP
mode, Stratum level, polling interval and clock precision

• Server’s round trip delay to its reference source and dispersion

• Identification of reference source

• 64 bit reference date (seconds and fractions from 1 January 1900
00:00:00 UTC)

• Time the request left the client

• Time the request arrived at the server

• Time the response left the server

NTP runs UTC – remember this!

#apricot2019 2019 47

NTP Operation

• In steady state the UDP clock packet exchange happens every 16
seconds
– Faster clock exchanges happen when the client clock has lost

synchronisation with the server, and it will burst 8 packets evenly spaced
across a 16 second interval

• If the local clock needs to be adjusted the client time application will
use adjtime() to slew the local clock. Clock correction is slow –
0.5ms per second
– Jumping the clock can fatally confuse applications, so this gentle slew is far

kinder

• NTP can normally maintain a client clock within a few hundredths of
second of the server reference clock

#apricot2019 2019 47

So we all agree on the time?

• If everything supports NTP, and there is a well structured
mesh of NTP reference clock servers then every connected
Internet device that runs a clock should have the same
value of time
– “same” is within a tenth of a second or less

• But does the Internet agree on the time?

#apricot2019 2019 47

The Experiment
• Use a scripted online ad to direct a client to report back the value of the

client’s clock
– Use the Javascript getTime() method to get the local UTC clock value
– Pass this value to the server as an argument to a URL fetch operation

• Use NTP-managed clock on the server to maintain a stable reference
clock

• Record the distribution of differences
– Ignore the fine-grained differences due to local processing and network

propagation time
– Which means that we are looking at measurements of time within +/- 1 second as

being equivalent

#apricot2019 2019 47

Results

#apricot2019 2019 47

Log Scales can be misleading

19

#apricot2019 2019 47

Results

We tested the clock of 202,460,921 clients
over a 80 day period:

– 11% of clocks are more than 1 second fast
– 57% of clients are more than 1 second

slow
– We observed clock slew values of up to 1

year both fast and slow
– 92% of clients are within 120 seconds of

the reference clock

#apricot2019 2019 47

Fast Clocks

0.05% of all clocks are ahead
by more than 2 days

There is a clear step function in
this distribution that is aligned
quite precisely to whole days

How can a client clock maintain
a stable per-second clock, yet
report a time value that is off by
a number of whole days?

#apricot2019 2019 47

Fast Clocks

0.7% of all clocks are ahead by
more than 1 hour

As with the day distribution,
there is a marked clustering of
the clock offsets into units of
hours, and a slightly smaller
clustering into half-hours

Similar question: How can a
client clock maintain a stable
per-second clock, yet report a
time value that is off by a
number of whole hours?

#apricot2019 2019 47

Slow Clocks

0.15% of all clocks lag by more
than 2 days (3 x the number of
fast clocks)

The per-day clustering is not so
clear for slow clocks with a lag
of greater than 2 days.

#apricot2019 2019 47

Slow Clocks

1.05% of all clocks lag by 1
hour or more

Here there is a marked
clustering of the clock offsets
into units of hours

#apricot2019 2019 47

Clustering of Clock Slew Values

This is a distribution of the clock slew
values when the whole hours are removed

There is a very strong signal that when a
clock has slewed from UTC time it does so
in units of hours (and less so in units of half-
hours)

NTP does not stabilize a local clock into a
slew value of a whole number of hours, so
this distribution is not an artefact of NTP.

What is going on here?

#apricot2019 2019 47

Clustering of Clock Slew Values

This is a distribution of the clock slew
values when the whole hours are removed

There is a very strong signal that when a
clock has slewed from UTC time it does so
in units of hours (and less so in units of half-
hours)

NTP does not stabilize a local clock into a
slew value of a whole number of hours, so
this distribution is not an artefact of NTP.

What is going on here?

Does any
one here

 have so
me idea of

 what ca
uses this

?

#apricot2019 2019 47

A Possible Theory

Localtime and UTC time are getting confused

We can test this theory with some additional data

Lets look at 3 countries with a large user population

#apricot2019 2019 47

Brazil

• LocalTime is UTC – 2,
UTC-3, UTC -4, UTC-5

• DST is variously
applied in Brazil

• So we should expect
localtime at UTC -1
through UTC-5

#apricot2019 2019 47

India

• LocalTime is UTC +5:30
• DST is not applied in

India
• So we should expect

localtime at UTC +5:30
• This is not clearly evident

in the data
• There is a strong bias to

30 minute offsets, but no
pronounced peak at
+5:30

#apricot2019 2019 47

China

• LocalTime is UTC
+8

• DST is not applied in
China

• So we should
expect a peak of
localtime at UTC +8

#apricot2019 2019 47

A Possible Theory

Localtime and UTC time are getting confused

For the remainder of cases this is not simple clock drift. Some
time source is syncing the local hosts UTC clock to the right
second, but the hour value of the sync source is incorrect

This o
ccurs b

etween
 10% t

o 20%
 of th

e time

#apricot2019 2019 47

A view of Whole of Internet Time

• Only 58% of visible clients run their clock with 2 seconds of
UTC time

• 92% of visible clients run a clock that is within 60 seconds
of UTC time

• 98% of clients are within 1 hour of UTC time

#apricot2019 2019 47

If your application’s behavior relies
on a consistent view of UTC time …
• Its probably a poor idea to assume that all local clocks are

tracking UTC time to within 1 hour

• Its probably more robust to work in periods of days rather
than seconds, minutes or even hours

#apricot2019 2019 47

Thanks!

