
2018#apricot2018 45

TCP and BBR
Geoff Huston

APNIC

2018#apricot2018 45

The IP Architecture

At its heart IP is a datagram network architecture
– Individual IP packets may be lost, re-ordered, re-timed and even

fragmented

2018#apricot2018 45

The IP Architecture

At its heart IP is a datagram network architecture
– Individual IP packets may be lost, re-ordered, re-timed and even

fragmented

!!!

!!!

2018#apricot2018 45

The IP Architecture

At its heart IP is a datagram network architecture
– Individual IP packets may be lost, re-ordered, re-timed and even

fragmented

2018#apricot2018 45

TCP

• The Transmission Control Protocol is an END-TO-END
protocol that creates a reliable stream protocol from the
underlying IP datagram device

• TCP uses a sliding window flow control protocol to manage
the data flow

ACKed Data unsent Dataunacknowledged Data

window

Data stream

2018#apricot2018 45

TCP Sliding Window

• Each ACK advertises the sequence number of the last “good”
received byte and the available buffer size in the receiver

• The sender can send up to a window size of data before
pausing for a window update

ACKed Data unsent Dataunacknowledged Data

window

Data stream

W=s ACK=n

n s

2018#apricot2018 45

Sliding Window protocols tend to
be “bursty”

time

Se
nd

in
g

ra
te

Send a window of data

Wait for acks to advertise re-opened window

Send a window of data

1 RTT

2018#apricot2018 45

Flow Control

• While TCP could send up to one window of data into the
network as fast as it can, it is possible/likely that this would
flood the network and generate packet loss

• The question is then how to regulate TCP’s sending
behaviour so that it sends as much data as it can while
avoiding network packet loss

• So lets look at networks…

2018#apricot2018 45

Network Considerations

Networks routers are constructed of links and routers
• Links are a constant delay lossless pipe
• Routers are a buffered switch

– Buffers within the router constrain the total amount of data that can be held in the
network

Input Buffers Output BuffersSwitch

2018#apricot2018 45

Queue Formation in Network Buffers

2018#apricot2018 45

Buffer Considerations

Buffers play the role of multiplexing adaptors
– If two packets arrive at the same instant, one packet is queued in a

buffer while the other is being services

Buffers also play the role of rate adaptation
– But only from fast to slow, and only in a limited role!

2018#apricot2018 45

Buffer Considerations

• When the queue fills then incoming packets are dropped – so
larger buffers are better to reduce the incidence of queue drop!

• When packets spend time in the queue it adds to the additional
time this packets spends in transit (this delay variation is called
jitter) – too much imposed jitter is bad, so smaller queues are
better!

• A reasonable rule of thumb for IP routers is to use a buffer
size equal to the delay bandwidth product of the next hop
link

2018#apricot2018 45

TCP Design Objectives

To maintain an average flow which is Efficient and Fair
• Efficient:

– Minimise packet loss
– Minimise packet re-ordering
– Do not leave unused path bandwidth on the table!

• Fair:
– Do not crowd out other TCP sessions
– Over time, take an average 1/N of the path capacity when there are N

other TCP sessions sharing the same path

2018#apricot2018 45

It’s a Flow Control process

• Think of this as a multi-
flow fluid dynamics
problem

• Each flow has to gently
exert pressure on the
other flows to signal
them to provide a fair
share of the network,
and be responsive to
the pressure from all
other flows

2018#apricot2018 45

How can we achieve this?

2018#apricot2018 45

A few more observations about TCP

• TCP is an ACK Pacing protocol

Data sending rate is matched to the
ACK arrival rate

2018#apricot2018 45

A few more observations about TCP

• TCP is an ACK Pacing protocol
– Each received ACK tells the sender how many bytes of data were

received by the remote receiver – which is the same as the number of
bytes that left the network

– If a sender paces its data to ensure that the same number of bytes
enters the network, then it will maintain a steady rate of network
“pressure” assuming a constant capacity network path

– If the sender sends more data into the network than is spanned by the
ACK then it increases its data rate and its network pressure

– Similarly if it sends less than the ACK span then it decrease its sending
rate and its network pressure

2018#apricot2018 45

A few more observations about TCP

ACK pacing protocols relate to a past network state, not
necessarily the current network state

– The ACK signal shows the rate of data that left the network at the
receiver that occurred at ½ RTT back in time

– So if there is data loss, the ACK signal of that loss is already ½ RTT
old!
• So TCP should react quickly to ‘bad’ news

– If there is no data loss, that is also old news
• So TCP should react conservatively to ‘good’ news

2018#apricot2018 45

“Classic TCP” – TCP Reno

• Additive Increase Multiplicative Decrease (AIMD)
– While there is no packet loss, increase the sending rate by One

Segment (MSS) each RTT interval
– If there is packet loss decrease the sending rate by 50% each RTT

Interval

• Start Up
– Each RTT interval, double the sending rate
– We call this “slow start” – probably because its anything but slow!!!

2018#apricot2018 45

Idealised TCP Reno

Time

Slow Start
Rate Doubles
each RTT
Interval

Congestion Avoidance
Rate increases by 1 MSS per RTT
Rate halves on Packet Loss

Notification of Packet Loss
via Duplicate ACKs causes
RENO to halve its sending
rate

2018#apricot2018 45

TCP RENO and Idealized Queue

Behaviour

Total Queue Capacity
(Onset of Packet Loss)

Link Capacity Capacity
(Onset of Queuing)

Network Buffers Fill

Network Buffers Drain

2018#apricot2018 45

Reno is “coarse”

• TCP Reno tries to oscillate between sending rates R and 2 x R
that span the link capacity

• It increases its sending rate slowly so it’s really lousy when trying
to run at very high speed over long delay networks

• It over-corrects on loss and leaves available path capacity idle
– 10Gbps rates over 100ms RTT demands a packet loss rate of less than

0.000003%
– A more common average 1% loss rate over a 100ms RTT maxes AIMD

to 3Mbps

2018#apricot2018 45

Reno is too “coarse”

• Could we make TCP faster and more efficient by changing
the way in which the sending rate is inflated?

2018#apricot2018 45

Refinements to TCP

• There have been many efforts to alter TCP’s flow control
algorithm to improve on RENO

• In a loss-based control system the essential parameters are
the manner of rate increase and the manner of loss-based
decrease
– For example:

MulTCP behaves as it it were N simultaneous TCP sessions: i.e. increase by N
segments each RTT and rate drop by 1/N upon packet loss

• What about varying the manner of rate increase?

2018#apricot2018 45

CUBIC

• CUBIC is designed to be useful for high speed sessions while still
being ‘fair’ to other sessions and also efficient even at lower speeds

• Rather than probe in a linear manner for the sending rate that triggers
packet loss, CUBIC uses a non-linear (cubic) search algorithm

C is a scaling factor
ß is the window deflation factor,
t is the time since the most recent window deflation
Wmax is the window size prior to the window deflation

2018#apricot2018 45

Idealized CUBIC operation

Link capacity

2018#apricot2018 45

CUBIC and Queue formation

2018#apricot2018 45

CUBIC

• Can react quickly to available capacity in the network
• Tends to sit for extended periods in the phase of queue

formation
• Can react efficiently to long fat pipes and rapidly scale up

the sending rate

• Can operate in a manner that tends to exacerbate ‘buffer
bloat’ conditions

2018#apricot2018 45

Can we do better?
• Lets look at the model of the network once more
• There are three ‘states’ of flow management in this network:

– Under-Utilised – where the flow rate is below the link capacity and no queues form
– Over-Utilised – where the flow rate is greater that the link capacity and queues form
– Saturated – where the queue is filled and packet loss occurs

• Loss-based control systems probe upward to the saturation point, and back
off to what they guess is the under-utilised state in order to the let the
queues drain

• But the optimal operational point for the flow is at the state change from
Under to Over utilised

2018#apricot2018 45

RTT and Delivery Rate with Queuing

Under-Utilised Over-Utilised Saturated

2018#apricot2018 45

How to detect the onset of

queuing?

• By carefully measuring the Round Trip Time!

2018#apricot2018 45

BBR Design Principles

• Probe the path capacity intermittently
• Probe the path capacity by increasing the sending rate for a short

interval:
– If the RTT of the probe equals the RTT of the previous state then there is

available path bandwidth that could be utilised
– If the RTT of the probe rises then the path is likely to be at the onset of

queuing and no further path bandwidth is available

• Do not alter the path bandwidth estimate in response to packet loss
• Pace the sending packets to avoid the need for network buffer rate

adaptation

2018#apricot2018 45

BBR
• Maintain a long term stable estimate of path RTT and a

shorter updated estimate of the bottleneck capacity of the
path

• Probe these estimates regularly, but not continuously
– Maintain the sending rate at this estimated bottleneck capacity rate

for 6 RTT intervals
– For the next RTT, raise the sending rate by 25% and sample the RTT
– If the RTT increased across this probe, then for the next RTT drop the

sending rate by 25%
– Otherwise assume this is the new bottleneck bandwidth

2018#apricot2018 45

Idealised BBR profile

2018#apricot2018 45

Idealised BBR profile

I’m not sure I
have the queue
size profile right
in this simulation

2018#apricot2018 45

BBR Politeness?

• BBR will probably not constantly pull back when
simultaneous loss-based protocols exert pressure on the
path’s queues

• BBR tries to make minimal demands on the queue size,
and does not rely on a large dynamic range of queue
occupancy during a flow

2018#apricot2018 45

From Theory to Practice
• Lets use BBR in the wild
• I’m using iperf3 on Linux platforms (Linode)

– The platforms are dedicated to these tests

• It’s the Internet
– The networks paths vary between tests
– The cross traffic is highly variable
– No measurement is repeatable to a fine level of detail

• These are long pipes
– Which is probably the opposite scenario of the target deployment

environment of BBR

2018#apricot2018 45

Cubic vs BBR over a 12ms RTT 10G
circuit

2018#apricot2018 45

Wow!
• That was BRUTAL!
• As soon as BBR started up it collided with CUBIC, and BBR

startup placed pressure on CUBIC such that CUBIC’s
congestion window was reduced close to zero

• At this stage CUBIC’s efforts to restart its congestion
window appear to collide with BBR’s congestion control
model, so CUBIC remains suppressed
– The inference is that BBR appears to be operating in steady state

with a relatively full network queue in order to crowd out CUBIC

2018#apricot2018 45

BBR vs Cubic – second attempt

Same two endpoints, same
network path across the public
Internet

Using a long delay path AU to
Germany via the US

2018#apricot2018 45

BBR vs Cubic

BB
R

 (1
) s

ta
rts

C
ub

ic
 s

ta
rts

BB
R

 (2
) s

ta
rts

C
ub

ic
 e

nd
s

BB
R

(2
) e

nd
s

The Internet is capable of
offering a 400Mbps capacity
path on demand!

In this case BBR is apparently
operating with filled queues,
and this crowds out CUBIC

BBR does not compete well
with itself, and the two sessions
oscillate in getting the majority
share of available path capacity

2018#apricot2018 45

BBR vs Cubic
Using a shorter (200ms)
creates an entirely different
profile

Its possible to drive the network
harder, and NNR is pulling
some 700Mbps in capacity

Cubic is still completely
crowded out of the picture!

Interestingly in this case two
BBR sessions share the
capacity very effectively

BB
R

 (1
) s

ta
rts

C
ub

ic
 s

ta
rts

BB
R

 (2
) s

ta
rts

C
ub

ic
 e

nd
s

BB
R

(2
) e

nd
s

2018#apricot2018 45

So what can we say about BBR?
It’s “interesting” in so many ways:

– It’s a move away from the more common loss-based flow control
protocols

– It looks likeit will operate very efficiently in a high-speed small-buffer
world
• High speed small buffer chips are way cheaper, but loss-based TCP

reacts really badly to small buffers by capping its flow rate
– It also looks as if it will operate efficiently in rate policed environments
– Unlike AIMD systems, it will scale from Kbps to Gbps over long delay

paths very efficiently
– It resists the conventional network-based traffic control mechanisms

2018#apricot2018 45

Why use BBR?

• Because it achieves!

2018#apricot2018 45

Why not use BBR?

• Because it over achieves!
• The classic question for many Internet technologies is scaling

– “what if everyone does it?”
– BBR is not a scalable approach
– It works so well for the user while it is used by just a few users,

some of the time
– But when it is active, BBR has the ability to slaughter concurrent

loss-based flows
– Which sends all the wrong signals to the TCP ecosystem

• The loss-based flows convert to BBR to compete on equal terms
• The network is then a BBR vs BBR environment, which is highly unstable
• And we all loose!

2018#apricot2018 45

While we are bad-mouthing BBR…
• Its really unfair in the (loss-based) Internet environment

– Its like driving a rocket-propelled bulldozer down the freeway!

• Its unstable, in that it appears to react quite radically to small
variations in the path characteristics

• It spends 75% of its time flying “blind” with respect to its sending
rate

• BBR’s RTT estimates are too susceptible to admit the onset of
queueing, and maintains a (too) high sending rate in the face of
large scale congestion loss.

2018#apricot2018 45

Is this BBR experiment a failure?

Is it just too ‘greedy’ and too ‘insensitive’ to other flows to be
allowed out on the Internet to play?

– Many networks have been provisioned as a response to the
aggregate behaviours of loss-based TCP congestion control

– BBR changes all those assumptions, and could potentially push
many networks into sustained instability

– We cannot use the conventional network control mechanisms to
regulate BBR flows
• Selective packet drop just wont create back pressure on the flow

2018#apricot2018 45

Where now?

BBR 2.0!
– Alter BBR’s ‘sensitivity’ to loss rates, so that it does not persist

with an internal bandwidth delay product (BDP) that exceeds the
uncongested BDP

This measure would moderate BBR 1.0’s ability to operate for
extended periods with very high loss levels

– Improve the dynamic sharing fairness by moderating the BDP by
using an estimated ‘fair’ proportion of the path BDP

– Alter the +/- 25% probe factors dynamically (i.e. allow this to be
less than 25% overload)

2018#apricot2018 45

That’s it!

Questions?

