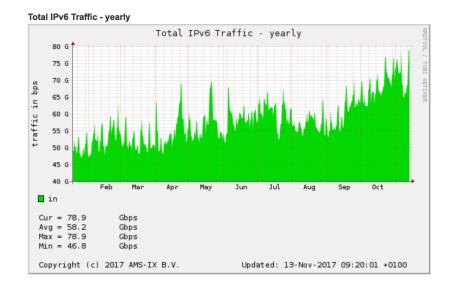

G coff Huston APNIC

#### How can we "measure" the uptake of IPv6?

- Alexa Lists: Dual Stack services




Steady at some 24% of sites for the past 5 months

ISOC 360 Deploy Pages

#### How can we "measure" the uptake of IPv6?

– IX stats: IPv6 traffic stats



30% increase in traffic volumes over the past 12 months

**AMSIX Traffic Statistics** 

# What should be be looking for?

- Generating measurements from the network is endless!
  - There are many aspects of the network infrastructure that can be measured
- But are they helpful measurements?
- In some ways measuring the infrastructure is getting it backwards!
- If we want to know what users can (or cannot) do, then why not measure the user?

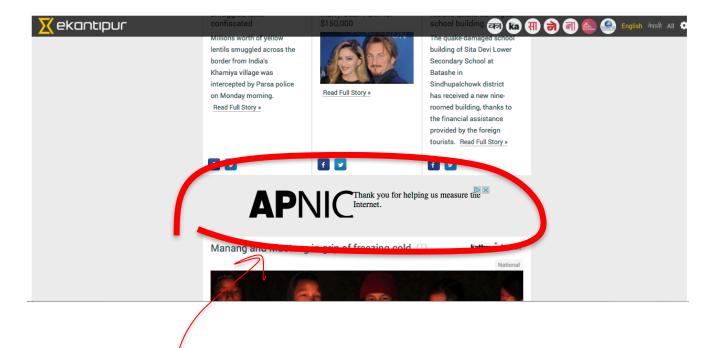
### **User-Centric measurements**

- How fast is your Internet connection?
- How reliable is your connection?
- How fast is your DNS service?
- Can you retrieve a web object over IPv6?
- Given a choice of IPv6 and IPv4 what protocol will your browser prefer to use to retrieve a web obejct?

### Measuring as a User

- How can we "see" the Internet as users see it?
- One approach is to put measurement equipment at the edge of the Internet
  - RIPE Atlas, CAIDA Archipelago, Sam Knows, etc
- Another approach is to get users to run the measurement tests

   ICSI Netalyser, Google M-Lab
- We can ride on the back of a widely distributed software platform
  - And insert a measurement script into this environment

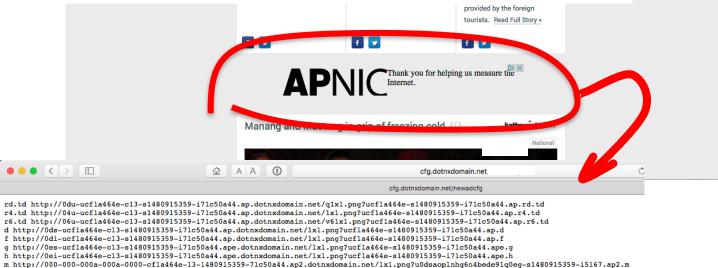

### We use Ads!

| 🗙 ekantıpur | confiscated                                                                                                                                                                            | \$150,000                        | school building 🚌 🔽                                                                                                                                                                                                                                                            | स। 🔿 🖲 🥌 | English नेपाली All 🔅 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
|             | Millions worth of yellow<br>lentils smuggled across the<br>border from India's<br>Khamiya village was<br>intercepted by Parsa police<br>on Monday morning.<br><u>Read Full Story »</u> | Read Full Story >                | The quake-damaged school<br>building of Sita Devi Lower<br>Secondary School at<br>Batashe in<br>Sindhupalchowk district<br>has received a new nine-<br>roomed building, thanks to<br>the financial assistance<br>provided by the foreign<br>tourists. <u>Read Full Story »</u> |          |                      |
|             | f 🔽                                                                                                                                                                                    | f 🔽                              | f 🔽                                                                                                                                                                                                                                                                            |          |                      |
|             |                                                                                                                                                                                        | NIC <sup>Thank</sup> you for hel | ping us measure the                                                                                                                                                                                                                                                            |          |                      |
|             | Manang and Mustan                                                                                                                                                                      | g in grip of freezing cold       | kathmandupost     National                                                                                                                                                                                                                                                     |          |                      |
|             |                                                                                                                                                                                        |                                  |                                                                                                                                                                                                                                                                                |          |                      |

### **APNIC's Measurement Technique**

- Embed a test script in an online ad
- Have the script generate a set of URLs to fetch
  - Each script uses unique names to avoid caching distortion
- Direct all the DNS and the HTTP traffic to a set of measurement servers
- Examine the traffic profile seen at the server

#### **How We Measure**




We use an online ad to present a sequence of small fetches to the user's browser

#### **How We Measure**

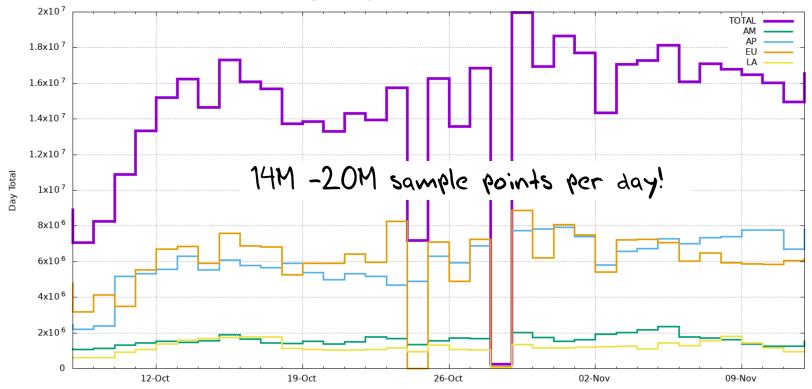


The sequence of tests is used to test a number of types of actions including fetches of IPv4, IPv6 and Dual stack



#### **How We Measure**

#### We use full packet capture to record all packet activity at the experiment's servers


01:15:56.373486 IP6 2001:388:1800:128:d257:65ff;feef:a842.48036 > 2400:8901::f83:91ff;fe98:63d6.88: Flags [.], ack 1, win 1026, options [nop.nop.TS val 4065296132 ecr 763257679], length 0 01:15:56.373502 IP6 2001:388:1000:120:d267:e5ff:feef:a842.40836 > 2400:8901::f03c:91ff:fe98:63d6.80: Flags [P.], seg 1:222, ack 1, win 1026, options [noo.nop.TS val 4065296132 ecr 763257679], length 221 01:15:56.586494 IP6 2400:8901::f03c:91ff:fe98:63d6.80 > 2001:380:1000:120:d267:e5ff:feef:a842.40836: Flags [.], ack 222, win 232, options [nop,nop,TS val 763257743 ecr 4065296132], length 0 811555.558564 [P6 2408:9901:f81:si1ff:fe98:5306.88 > 2001:380:120:627:e5ff:feef:a842.48835 + Clags [P.], seq 1:233, ack 222, win 223, options [nop.nop.Ts val 762357743 ecr 4065596132], length 292 [P1:1555.591564] [PF 2001:381:1000:120:627:e5ff:freef:a842.48835 > 4200:981:f83:e17:e535784] [P1:1556.282], length 292 [P1:1556.282], 011555.88.0526 1D6 2400:09011:180:c31ff;he08:6306.00 > 20011380:1004:128:0267:e5ff;hee;1a042.(4305): 4102(4305): 4103(4307); 417(4305); 417(4305); 417(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103(4305); 4103 01:16:20.457379 IP6 2400:8901::f03c:91ff:fe98:63d6.80 > 2001:308:1000:120:d267:e5ff:feef:a842.31238: Flags [5.], seg 1748054555, ack 1299030902, win 20560, options [mss 1440,sack0K,TS val 763264905 ecr 4065320002,nop,wscale 7], length 0 01:16:20.457397 IP6 2001:388:1000:120:d267:e5ff:feef:a042.31238 > 2400:8901::f03c:91ff:fe98:63d6.80: Flags [.], ack 1, win 1026, options [nop,nop,TS val 4065320215 ecr 763264905], length 0 8115628.457413 1P6 20811388:10081128:1257:e5ff:feef:a082.31238 > 240818081:1\*082:01ff:fe98:6363.08 + Flags [P], seq 1:224, act 1, vin 1252, options [nog.nog.T5 vil 4065320215 ccr 78236498], length 223 01:16:20.670979 IP6 2400:8901::f03c:91ff:fe98:63d6.80 > 2001:388:1000:120:d267:e5ff:feef:a842.31238: Flags [P.], seq 1:293, ack 224, win 232, options [nop,nop,TS val 763264969 ecr 4065320215], length 292 01:16:20.671386 IP6 2001:388:1000:120:d267:e5ff:feef:a842.31238 > 2400:8901::f03c:91ff:fe98:63d6.80: Flags [F.] , seq 224, ack 293, win 1026, options [nop,nop,TS val 4065320429 ecr 763264969], length 0 , seq 293, ack 225, win 232, options [nop,nop,TS val 763265033 ecr 4065320429], length 0 01:16:28.084796 IPG 2001:308:1000:1201:63:07:0517:69516366.00 > 2406:3901.:f03:51711-1630-50006 + Cags [F], scq 224, ak 25, wil 262, options [nop,nop,T5 val 4065324045 et / 0520495], 01:16:28.084796 IPG 2001:381:1000:120:d267:e5f1:6e51:201d267:e5f1:feef:a042,31238 = [F], scq 23, ak 225, wil 262, options [nop,nop,T5 val 4065324043 et / 76326533], length @ 01:16:28.084796 IPG 2001:381:1000:120:d267:e5f1:feef:a042,31238 > 2400:89011:f03:e1f1:fe98:63d6.00 = Flags [.], ak 294, wil 1026, options [nop,nop,T5 val 4065324043 et / 76326533], length @ 01:16:36.025996 IP6 2001:388:1000:120:d267:e5ff:feef:a842.64866 > 2400:8901::f03c:91ff:fe98:63d6.80: Flags [S], seq 1648543162, win 65535, options [mss 1440,nop,wscale 6,sack0K,TS val 4065335784 ecr 0], length 0 01:16:36.239388 IP6 2400:8901::f03c:91ff:fe98:63d6.80 > 2001:388:1000:120:d267:e5ff:feef:a842.64866: Flags [S.], seq 2170829105, ack 1648543163, win 28560, options [mss 1440,sack0K,TS val 763269639 ecr 4065335784,nop.wscale 7], length 0 01:16:36.239407 IP6 2001:308:1000:120:d267:e5ff:feef:a842.64866 > 2400:8901::f03c:91ff:fe98:63d6.80: Flags [.] ack 1, win 1026, options [nop,nop,TS val 4065335998 ecr 763269639], length 0 01:16:36.453147 IP6 2400:8901:::f03c:91ff:fe98:63d6.80 > 2001:388:1000:120:d267:e5ff:feef:a842.64866: Flags [.], ack 232, win 232, options [hop,nop,T5 val 763269703 ecr 4065335998], length 0 811653,453449 IPG 2400:0901:1632:511f1608:5306.08 > 2001:308:1200:02126:55f1fefe13842.64665 r Hags [P.], seq 1:233, ack 232, win 232, options [nop.nop.75 val 763269703 err 4065335908], length 292 0116536.453441 IPG 2001:2016:021:0516ffrefe13842.46665 > 2400:8001:1783:511f1fred8:6346.08 r Hags [F.], seq 232, ack 233, win 1262, options [nop.nop.75 val 465335242] err 763269703], length 4 01:16:36.667228 IP6 24 193:191f;fe98:63d6.68 > 2001:388:1000:120:d267:e5ff;feef:a842.64066: Flags [F.], seq 293, ack 233, win 232, options [nop,nop,TS val 763269767 ecr 4065336212], length 0 01:16:36.667237 IP6 00:120:d267:e5ff:feef:a842.64866 > 2400:8901::f03c:91ff:fe98:63d6.80: Flags [.], ack 294, win 1026, options [nop,nop,TS val 4065336425 ecr 763269767], length 0 Manand and Nationa 合 AA (1) cfg.dotnxdomain.net cfg.dotnxdomain.net/newadcfg rd.td http://0du-ucf1a464e-c13-s1480915359-i71c50a44.ap.dotnxdomain.net/g1x1.png?ucf1a464e-s1480915359-i71c50a44.ap.rd.td r4.td http://04u-ucfla464e-c13-s1480915359-i71c50a44.ap.dotnxdomain.net/1x1.png?ucfla464e-s1480915359-i71c50a44.ap.r4.td r6.td http://06u-ucfla464e-c13-s1480915359-i71c50a44.ap.dotnxdomain.net/v61x1.png?ucfla464e-s1480915359-i71c50a44.ap.r6.td d http://0ds-ucfla464e-c13-s1480915359-i71c50a44.ap.dotnxdomain.net/lx1.png?ucfla464e-s1480915359-i71c50a44.ap.d f http://0di-ucfla464e-c13-s1480915359-i71c50a44.ap.dotnxdomain.net/1x1.png?ucfla464e-s1480915359-i71c50a44.ap.f g http://0es-ucfla464e-c13-s1480915359-i71c50a44.ape.dotnxdomain.net/lx1.png?ucfla464e-s1480915359-i71c50a44.ape.g h http://0ei-ucfla464e-c13-s1480915359-i71c50a44.ape.dotnxdomain.net/1x1.png?ucfla464e-s1480915359-i71c50a44.ape.h

165295918 ecr 0], length 0

m http://000-000a-000a-0000-cfla464e-13-1480915359-71c50a44.ap2.dotnxdomain.net/lxl.png?u0dsaoplnhg6n4bede91q0eg-s1480915359-i5167.ap2.m n http://000-3ea-000a-000a-0000-cfla464e-13-1480915359-71c50a44.ap2.dotnxdomain.net/lxl.png?u0diaoplnhg6n4bede91q0eg-s1480915359-i5167.ap2.n o http://000-508-000a-000a-0000-cfla464e-13-1480915359-71c50a44.ap2.dotnxdomain.net/lxl.png?u0diaoplnhg6n4bede91q0eg-s1480915359-i5167.ap2.o results http://0du-results-ucfla464e-c13-s1480915359-i71c50a44.ap2.dotnxdomain.net/lxl.png?u0diaoplnhg6n4bede91q0eg-s1480915359-i5167.ap2.o

#### How Much do We Measure?

Daily Total Ad Impressions for Servers - Month: 08-Oct to 12-Nov



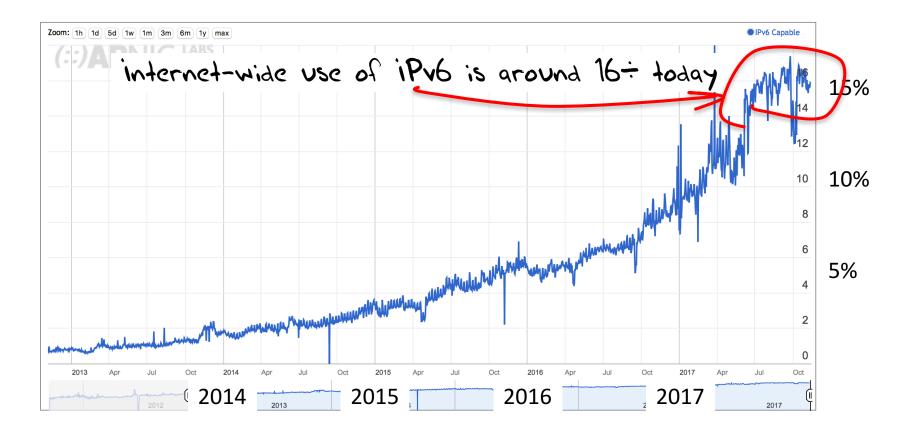
In the Ad we have two URLs:

- one can only be fetched if the user is able to complete the fetch using IPv6 - IPv6 "CAPABLE"
- Another can be fetched using either IPv4 or IPv6 we are interested in which protocol is "PREFERRED" when given the choice

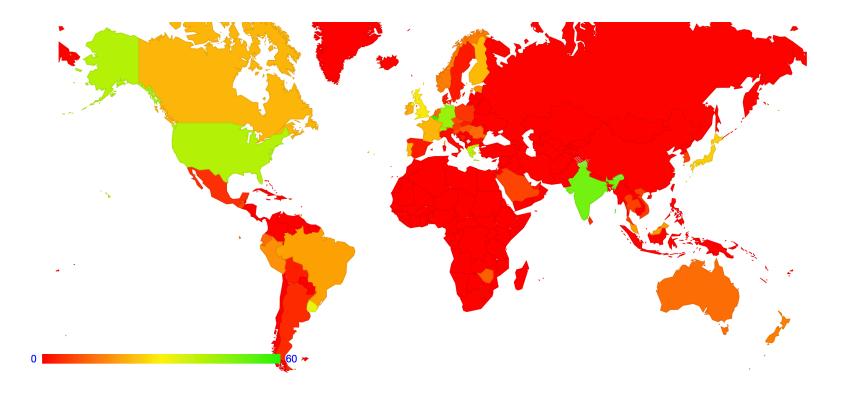
We count the results and group it by economy and by network per day, giving up a long term picture about the global update of IPv6 in the Internet by users

Originally we thought that the Internet would avoid complete IPv4 exhaustion and adopt IPv6 while there was still some IPv4 left in the unallocated address pools

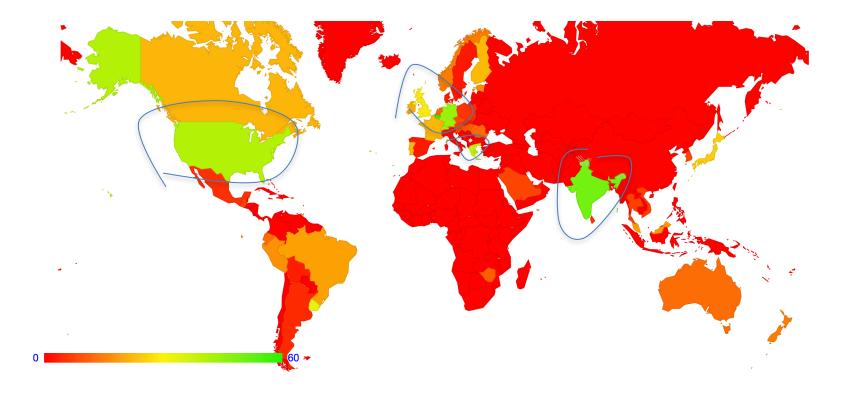
Originally we thought that the Internet would avoid complete IPv/ and happened. Jopt IPv6 while there was still some This has not happened. Jopt address pools


Originally we thought that the constant would avoid complete IP this has not happened in and adopt IPv6 while there was still some IF the in the unallocated address pools

Then we thought that the reality of IPv4 exhaustion would prompt all service providers to accelerate their IPv6 deployment plans


Originally we thought that +L colored would avoid complete IP this was not happened in and adopt IPv6 while there was still some IF v4 left in the unallocated address pools

Then we thought that the reality be used instead! prompt all share NATS appear to be used instead! deployment plans


### **Global Uptake of IPv6**



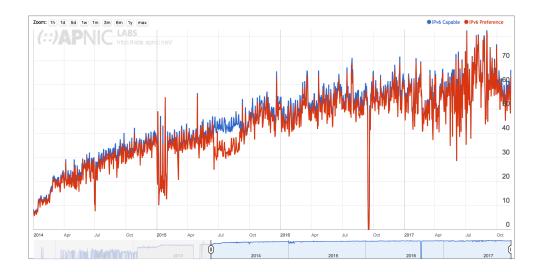
#### Where are these IPv6 Users?



#### Where are these IPv6 Users?



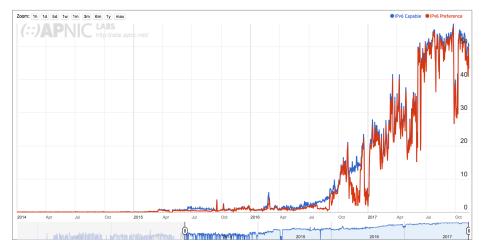
#### Where are IPv6 Users?


| co    | Country                                                                       | IPv6 Capable |
|-------|-------------------------------------------------------------------------------|--------------|
| BE    | Belgium, Western Europe, Europe                                               | 60.44%       |
| IN IN | India, Southern Asia, Asia                                                    | 51.01%       |
| DE    | Germany, Western Europe, Europe                                               | 41.83%       |
| 🤍 US  | United States of America, Northern America, Americas                          | 40.67%       |
| СН    | Switzerland, Western Europe, Europe                                           | 40.17%       |
| GR    | Greece, Southern Europe, Europe                                               | 37.07%       |
| LU    | Luxembourg, Western Europe, Europe                                            | 30.20%       |
| GB    | United Kingdom of Great Britain and Northern Ireland, Northern Europe, Europe | 27.11%       |
| ́Э JP | Japan, Eastern Asia, Asia                                                     | 25.07%       |
| PT    | Portugal, Southern Europe, Europe                                             | 23.86% 🕨 🧏   |
| FR    | France, Western Europe, Europe                                                | 23.42%       |
| TT    | Trinidad and Tobago, Caribbean, Americas                                      | 21.84%       |
| CA    | Canada, Northern America, Americas                                            | 21.63%       |
| BR    | Brazil, South America, Americas                                               | 19.54%       |
| EE    | Estonia, Northern Europe, Europe                                              | 19.39%       |
| FI    | Finland, Northern Europe, Europe                                              | 19.11%       |
| UY    | Uruguay, South America, Americas                                              | 18.60%       |
| MY    | Malaysia, South-Eastern Asia, Asia                                            | 18.33%       |
| IE    | Ireland, Northern Europe, Europe                                              | 18.11%       |
| AU    | Australia, Australia and New Zealand, Oceania                                 | 17.56%       |

#### Which ISPs offer IPv6?

#### Visible ASNs: Customer Populations (Est.)

| ASN     | AS Name                                              | CC        | Users (est.) | V6 Users (est) 🔻 | % of AS |    |
|---------|------------------------------------------------------|-----------|--------------|------------------|---------|----|
| AS55836 | RELIANCEJIO-IN Reliance Jio Infocomm Limited         | <u>IN</u> | 253,329,150  | 224,493,397      | 88.62   | 7  |
| AS7922  | COMCAST-7922 - Comcast Cable Communications, LLC     | <u>US</u> | 49,564,281   | 34,997,149       | 70.61   | F  |
| AS7018  | ATT-INTERNET4 - ATT Services, Inc.                   | <u>US</u> | 28,690,839   | 23,505,271       | 81.93   |    |
| AS3320  | DTAG Internet service provider operations            | DE        | 22,771,877   | 13,881,372       | 60.96   |    |
| AS5607  | BSKYB-BROADBAND-AS                                   | <u>GB</u> | 14,904,373   | 13,602,587       | 91.27   |    |
| AS21928 | T-MOBILE-AS21928 - T-Mobile USA, Inc.                | <u>US</u> | 12,437,505   | 10,983,012       | 88.31   |    |
| AS22394 | CELLCO - Cellco Partnership DBA Verizon Wireless     | <u>US</u> | 11,919,972   | 10,418,084       | 87.4    |    |
| AS2516  | KDDI KDDI CORPORATION                                | <u>JP</u> | 18,767,464   | 9,848,834        | 52.48   |    |
| AS28573 | CLARO S.A.                                           | BR        | 25,592,920   | 9,334,494        | 36.47   |    |
| AS45271 | ICLNET-AS-AP Idea Cellular Limited                   | <u>IN</u> | 30,477,688   | 9,073,769        | 29.77   |    |
| AS3215  | AS3215                                               | <u>FR</u> | 18,387,417   | 8,006,805        | 43.55   |    |
| AS17676 | GIGAINFRA Softbank BB Corp.                          | <u>JP</u> | 22,351,193   | 7,861,076        | 35.17   |    |
| AS31334 | KABELDEUTSCHLAND-AS                                  | DE        | 9,721,998    | 6,744,795        | 69.38   |    |
| AS22773 | ASN-CXA-ALL-CCI-22773-RDC - Cox Communications Inc.  | <u>US</u> | 12,045,284   | 5,907,955        | 49.05   | ĉ, |
| AS18881 | TELEFNICA BRASIL S.A                                 | BR        | 17,021,711   | 5,599,772        | 32.9    |    |
| AS12322 | PROXAD                                               | <u>FR</u> | 13,845,655   | 5,210,968        | 37.64   |    |
| AS20057 | ATT-MOBILITY-LLC-AS20057 - ATT Mobility LLC          | <u>US</u> | 10,085,376   | 4,945,586        | 49.04   |    |
| AS4713  | OCN NTT Communications Corporation                   | <u>JP</u> | 21,780,913   | 4,717,811        | 21.66   |    |
| AS6830  | LGI-UPC formerly known as UPC Broadband Holding B.V. | DE        | 6,442,545    | 4,422,213        | 68.64   |    |
| AS8151  | Uninet S.A. de C.V.                                  | <u>MX</u> | 32,435,960   | 3,927,096        | 12.11   |    |
| AS27699 | TELEFNICA BRASIL S.A                                 | BR        | 9,705,648    | 3,836,841        | 39.53   | 1  |

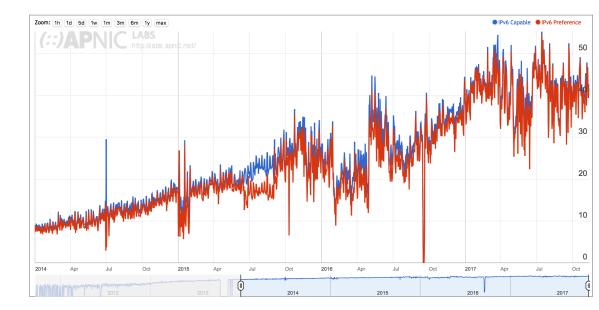





| ASN     | AS Name                                                   | IPv6 Capable | IPv6 Preferred | Samples |
|---------|-----------------------------------------------------------|--------------|----------------|---------|
| AS5432  | BELGACOM-SKYNET-AS                                        | 58.54%       | 56.32%         | 793,654 |
| AS6848  | TELENET-AS                                                | 75.67%       | 73.65%         | 451,616 |
| AS12392 | ASBRUTELE VOO                                             | 77.52%       | 74.81%         | 208,118 |
| AS47377 | MES KPN Belgium Business NV has been acquired by Mobistar | 0.06%        | 0.02%          | 54,475  |
| AS21502 | ASN-NUMERICABLE                                           | 0.01%        | 0.01%          | 37,213  |
| AS2611  | BELNET                                                    | 7.11%        | 6.90%          | 12,458  |
| AS44944 | BASE-AS Telenet Group BVBASPRL                            | 0.36%        | 0.13%          | 11,168  |

#### India

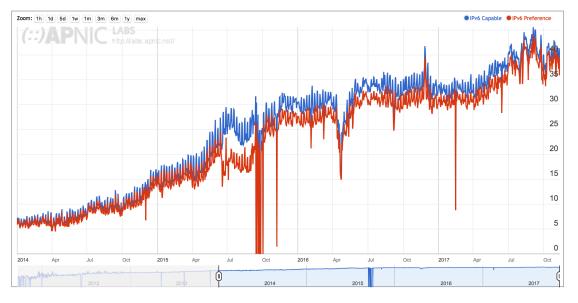
#### Use of IPv6 for India (IN)






| ASN     | AS Name                                                                   | IPv6 Capable | IPv6 Preferred | Samples 🔻  |
|---------|---------------------------------------------------------------------------|--------------|----------------|------------|
| AS55836 | RELIANCEJIO-IN Reliance Jio Infocomm Limited                              | 88.69%       | 85.38%         | 68,291,551 |
| AS45609 | BHARTI-MOBILITY-AS-AP Bharti Airtel Ltd. AS for GPRS Service              | 2.57%        | 2.47%          | 14,200,162 |
| AS45271 | ICLNET-AS-AP Idea Cellular Limited                                        | 31.88%       | 25.71%         | 8,296,320  |
| AS38266 | HUTCHVAS-AS Vodafone Essar Ltd., Telecommunication - Value Added Services | 12.57%       | 11.56%         | 6,798,834  |
| AS9829  | BSNL-NIB National Internet Backbone                                       | 0.03%        | 0.02%          | 6,189,645  |

#### Germany

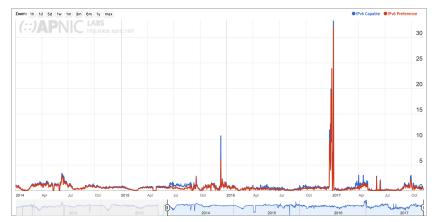





| ASN     | AS Name                                              | IPv6 Capable | IPv6 Preferred | Samples   |
|---------|------------------------------------------------------|--------------|----------------|-----------|
| AS3320  | DTAG Internet service provider operations            | 60.89%       | 59.73%         | 2,056,846 |
| AS3209  | VODANET International IP-Backbone of Vodafone        | 0.03%        | 0.02%          | 955,507   |
| AS31334 | KABELDEUTSCHLAND-AS                                  | 68.63%       | 67.59%         | 825,355   |
| AS6830  | LGI-UPC formerly known as UPC Broadband Holding B.V. | 67.05%       | 65.85%         | 551,091   |
| AS6805  | TDDE-ASN1                                            | 4.96%        | 4.86%          | 539,929   |
| AS29562 | KABELBW-ASN                                          | 55.85%       | 54.89%         | 268,299   |
| AS8422  | NETCOLOGNE                                           | 21.60%       | 20.93%         | 101,555   |

# **United States**






| ASN     | AS Name                                                         | IPv6 Capable | IPv6 Preferred | Samples    |
|---------|-----------------------------------------------------------------|--------------|----------------|------------|
| AS7922  | COMCAST-7922 - Comcast Cable Communications, LLC                | 70.69%       | 68.03%         | 15,778,372 |
| AS7018  | ATT-INTERNET4 - ATT Services, Inc.                              | 82.45%       | 78.53%         | 9,105,707  |
| AS20115 | CHARTER-NET-HKY-NC - Charter Communications                     | 11.93%       | 11.27%         | 5,549,054  |
| AS701   | UUNET - MCI Communications Services, Inc. dba Verizon Business  | 0.26%        | 0.02%          | 4,533,275  |
| AS21928 | T-MOBILE-AS21928 - T-Mobile USA, Inc.                           | 88.85%       | 87.62%         | 3,954,016  |
| AS22773 | ASN-CXA-ALL-CCI-22773-RDC - Cox Communications Inc.             | 49.01%       | 46.80%         | 3,891,026  |
| AS22394 | CELLCO - Cellco Partnership DBA Verizon Wireless                | 87.83%       | 84.23%         | 3,860,221  |
| AS209   | CENTURYLINK-US-LEGACY-QWEST - Qwest Communications Company, LLC | 0.11%        | 0.06%          | 3,420,768  |
| AS20057 | ATT-MOBILITY-LLC-AS20057 - ATT Mobility LLC                     | 49.82%       | 48.91%         | 3,237,511  |
| AS10796 | SCRR-10796 - Time Warner Cable Internet LLC                     | 41.24%       | 39.88%         | 2,763,738  |
| AS20001 | ROADRUNNER-WEST - Time Warner Cable Internet LLC                | 50.30%       | 48.22%         | 2,289,901  |

### China



#### Use of IPv6 for China (CN)



| ASN     | AS Name                                                              | IPv6 Capable | IPv6 Preferred | Samples   |
|---------|----------------------------------------------------------------------|--------------|----------------|-----------|
| AS4134  | CHINANET-BACKBONE No.31, Jin-rong Street                             | 0.34%        | 0.25%          | 5,756,637 |
| AS4837  | CHINA169-BACKBONE CHINA UNICOM China169 Backbone                     | 0.41%        | 0.32%          | 2,537,732 |
| AS9808  | CMNET-GD Guangdong Mobile Communication Co.Ltd.                      | 0.22%        | 0.13%          | 798,057   |
| AS4812  | CHINANET-SH-AP China Telecom (Group)                                 | 0.21%        | 0.13%          | 648,471   |
| AS24444 | CMNET-V4SHANDONG-AS-AP Shandong Mobile Communication Company Limited | 0.09%        | 0.06%          | 516,368   |
| AS4808  | CHINA169-BJ China Unicom Beijing Province Network                    | 1.58%        | 1.37%          | 419,583   |
| AS56046 | CMNET-JIANGSU-AP China Mobile communications corporation             | 0.21%        | 0.11%          | 364,250   |
| AS56041 | CMNET-ZHEJIANG-AP China Mobile communications corporation            | 0.03%        | 0.01%          | 345,680   |
| AS56040 | CMNET-GUANGDONG-AP China Mobile communications corporation           | 0.07%        | 0.04%          | 304,231   |
| AS4847  | CNIX-AP China Networks Inter-Exchange                                | 4.13%        | 3.38%          | 145,982   |
| AS4538  | ERX-CERNET-BKB China Education and Research Network Center           | 29.21%       | 23.94%         | 126,205   |
|         |                                                                      |              |                |           |

## Asia Ranking

| СС  | Country                                                              | IPv6 Capable |
|-----|----------------------------------------------------------------------|--------------|
| IN  | India, Southern Asia, Asia                                           | 51.00%       |
| JP  | Japan, Eastern Asia, Asia                                            | 25.08%       |
| MY  | Malaysia, South-Eastern Asia, Asia                                   | 18.33%       |
| TH  | Thailand, South-Eastern Asia, Asia                                   | 11.26%       |
| MO  | Macao Special Administrative Region of China, Eastern Asia, Asia     | 9.27%        |
| VN  | Vietnam, South-Eastern Asia, Asia                                    | 8.99%        |
| KR  | Republic of Korea, Eastern Asia, Asia                                | 8.85%        |
| SA  | Saudi Arabia, Western Asia, Asia                                     | 7.25%        |
| LK  | Sri Lanka, Southern Asia, Asia                                       | 6.32%        |
| SG  | Singapore, South-Eastern Asia, Asia                                  | 4.68%        |
| IL. | Israel, Western Asia, Asia                                           | 2.55%        |
| AE  | United Arab Emirates, Western Asia, Asia                             | 2.08%        |
| CN  | China, Eastern Asia, Asia                                            | 0.72%        |
| IR  | Iran (Islamic Republic of), Southern Asia, Asia                      | 0.44%        |
| ΤW  | Taiwan, Eastern Asia, Asia                                           | 0.38%        |
| OM  | Oman, Western Asia, Asia                                             | 0.38%        |
| ΗK  | Hong Kong Special Administrative Region of China, Eastern Asia, Asia | 0.35%        |
| חו  | Indonesia South Eastern Asia Asia                                    | 0 21%        |

# Why this difference?

- Early adopters vs later adopters
  - Later adopters do not have a broad base of IPv4 installation, and have been pushed into using IPv6 as the common infrastructure with NAT64 edges (Jio in India is a good example)
  - Early adopters are not forced into IPv6 and can wait
- Carriage Economics
  - The economic returns in deploying IPv6 across an IPv4 infrastructure do not generate new revenues, nor generate operational savings or generate supply efficiencies
  - There is no "adoption pull" effect in IPv6

# Why do it at all?

We don't think we can make IPv4 + NATS last forever

Deploying IPv6 is a case of timing, not choice

And the selection of timing is a case of risk determination:

Nobody wants to shift to dual stack too early – that incurs cost without revenue

But nobody wants to be the last "IPv4-only" network either!

## For China

- Most ISPs in China are being cautious and waiting to see what others are doing
- But you can wait too long, and then you might have to perform a switchover at an inconvenient time
- Right now Chinese ISPs still have the luxury of choice in when to move to deploy IPv6
  - But that will not always be the case!



http://stats.labs.apnic.net/v6