
IPv6: Are we really 
ready to turn off 

IPv4?
Geoff	Huston

APNIC



The IPv6 Timeline…

1990 2000 2010 2020



The IPv6 Timeline…

1990 2000 2010 2020

Yes, we’ve been working on this 
for close to 30 years!



In-situ transition…



In-situ transition…

IPv4 Internet

Phase 1 – Early Deployment

Edge Dual -Stack 
Networks

IPv6 networks interconnect by
IPv6-over-IPv4 tunnels



In-situ transition…
Phase 2 – Dual Stack Deployment

Edge Dual-Stack
Networks

IPv6 networks interconnect by
Dual Stack transit paths

Transit Dual-Stack
Networks



In-situ transition…

IPv6 Internet

Phase 3 – IPv4 Sunset

Edge Dual Stack 
Networks

IPv4 networks interconnect by
IPv4-over-IPv6 tunnels



In-situ transition…

IPv4	Pool	Size

IPv6	Deployment

Size	of	the	
Internet

Dual Stack Transition

We’re pretty lousy at following plans!



The Map of IPv6 penetration – November 2017



The Map of IPv6 penetration – November 2017



We’re stuck in Phase 2

Some	15%	- 20%	of	Internet	users	have	IPv6	capability

In	the	IoT world	the	IPv6	numbers	appear	to	be	far	lower	
than	this

Most	new	IP	deployments	use	IPv6+	(NATTED) IPv4

IPv4-only	Legacy	networks	are	being	(gradually)	migrated	to	
dual	stack



We’re stuck in Phase 2

Some	15%	- 20%	of	Internet	users	have	IPv6	capability

In	the	IoT world	the	IPv6	numbers	appear	to	be	far	lower	
than	this

Most	new	IP	deployments	use	IPv6+	(NATTED) IPv4

IPv4-only	Legacy	networks	are	being	(gradually)	migrated	to	
dual	stack



Today

We	appear	to	be	in	the	middle	of	the	transition!

Dual	Stack networks	cannot	drop	support	for	IPv4	as	long	as	
significant	services	and	user	populations	do	not	support	IPv6	



Today

We	appear	to	be	in	the	middle	of	the	transition!

Dual	Stack networks	cannot	drop	support	for	IPv4	as	long	as	
significant	services	and	user	populations	do	not	support	IPv6	
– and	we	can’t	tell	when	that	may	change

Nobody	is	really	in	a	position	to	deploy	a	robust	at-scale	ipv6-
only	network	service	today,	even	if	they	wanted	to!

And	we	are	not	even	sure	if	we	can!



Today

We	appear	to	be	in	the	middle	of	the	transition!

Dual	Stack networks	cannot	drop	support	for	IPv4	as	long	as	
significant	services	and	user	populations	do	not	support	IPv6	
– and	we	can’t	tell	when	that	may	change

Nobody	is	really	in	a	position	to	deploy	a	robust	at-scale	ipv6-
only	network	service	today,	even	if	they	wanted	to!

And	we	are	not	even	sure	if	we	can!



The Issue

We	cannot	run	Dual-Stack	services	indefinitely

At	some	point	we	need	to	support	networks	that	only	have	IPv6

Is	that	viable?



In other words…

What	do	we	rely	on	today	in	IPv4	that	does	not	appear	to	have	a	clear	
working	counterpart	in	IPv6?



In other words…

What	do	we	rely	on	today	in	IPv4	that	does	not	appear	to	have	a	clear	
working	counterpart	in	IPv6?

If	the	answer	is	“nothing”	then	we	are	done!

But	if	there	is	an	issue	here,	then	we	should	be	working	on	it!



Version IHL Total Length

FlagsIdentification Fragment Offset

Time To Live

Source Address

Destination Address

Options Padding

Protocol Header Checksum

Type of Service

Version Class Flow

Payload Length Hop Limit

Source Address

Destination Address

Next Header

IPv4 Header

IPv6 Header

IPv6: What changed?



IPv6: What changed?

Type	of	Service	is	changed	to	Traffic	Class

32	bit	Fragmentation	Control	were	pushed	into	an	Extension	Header

Flow	Label	Added

Options	and	Protocol	fields	replaced	by	Extension	Headers

Checksum	becomes	a	media	layer	function



IPv6: What changed?

Type	of	Service	is	changed	to	Traffic	Class

32	bit	Fragmentation	Control	were	pushed	into	an	Extension	Header

Flow	Label	Added

Options	and	Protocol	fields	replaced	by	Extension	Headers

Checksum	becomes	a	media	layer	function



IPv6: What changed?

Type	of	Service	is	changed	to	Traffic	Class

32	bit	Fragmentation	Control	were	pushed	into	an	Extension	Header

Flow	Label	Added

Options	and	Protocol	fields	replaced	by	Extension	Headers

Checksum	becomes	a	media	layer	function



IPv4 Router

IPv4 header

Payload
TCP/UDP header

IPv4 header

Payload
TCP/UDP header1

2

IPv6: What changed?
IPv4 “Forward Fragmentation”



IPv4 Router

IPv4 header

Payload
TCP/UDP header

IPv4 header

Payload
TCP/UDP header

IPv6 Router

IPv6 header

Payload
TCP/UDP xtn header

Payload
TCP/UDP xtn header

ICMPv6 PTB
IPv6 header

IPv6 header

Payload
TCP/UDP xtn header

Fragmentation xtn header

1

2

3

1
2

IPv6: What changed?
IPv4 “Forward Fragmentation”

IPv6 “Source Fragmentation”

Source

Source



ICMPv6 and Anycast

Sender Instance
Client

Sender Instance

Sender Instance

Anycast Constellation

Sender Instance

Sender Instance

It	is	not	obvious	(or	even	assured)	that	every	router	on	the	path	from	an	anycast
instance	to	a	client	host	will	necessarily	be	part	of	the	same	anycast instance	“cloud”	

The	implication	is	that	in	anycast,	the	reverse	ICMPv6	PTB	messages	will	not	necessarily	
head	back	to	the	original	sender!



New Dependencies

For	IP	fragmentation	to	work	in	IPv6	then:

- all	ICMPv6	messages	have	to	be	passed	backwards from	the	interior
of	the	network	to	the	sender

- IPv6	packets	containing	a	IPv6	Fragmentation	Extension
header	should	not be	dropped



Processing incoming ICMPv6 messages

Only	the	sending	host	now	has	control	of	fragmentation	– this	is	a	new	twist

A	received	ICMPv6	message	needs	to	alter	the	sender’s	state	to	that	destination

For	TCP,	if	the	ICMP	payload	contains	the	TCP	header,	then	you	can	pass	this	to	the	
TCP	control	block.	TCP	can	alter	the	session	MSS	and	resend	the	dropped	data

For	UDP – um,	err,	um	well



Processing incoming ICMPv6 messages

Only	the	sending	host	now	has	control	of	fragmentation	– this	is	a	new	twist

A	received	ICMPv6	message	needs	to	alter	the	sender’s	state	to	that	destination

For	TCP,	if	the	ICMP	payload	contains	the	TCP	header,	then	you	can	pass	this	to	the	
TCP	control	block.	TCP	can	alter	the	session	MSS	and	resend	the	dropped	data

For	UDP – um,	err,	um	well

Maybe	you	should	store	the	revised	path	MTU	in	a	host	 forwarding	table	cache	for	a	
while

If	you	ever	need	to	send	another	UDP	packet	to	this	host	you	can	use	this	cache	entry	
to	guide	your	fragmentation	behaviour



IPv6 and Fragmentation

The	theory	is	that	TCP	in	IPv6	should	never	send	a	fragmented	packet	- TCP	should	use	the	session	MSS	as	a	
guide	to	packet	sizes	and	segment	the	stream	according	to	the	session	MSS

However,	UDP	cannot	avoid	fragmentation - large	payloads	in	UDP	simply	need	to	be	fragmented	to	fit	
within	the	path	MTU

Fragmentation	in	IPv6	uses	the	same	control	fields	as	IPv4	– a	packet	identifier,	a	fragmentation	
offset	and	a	More	Frags	flag

BUT	they	are	located	in	an	inserted	“shim”	that	sits	between	the	IPv6	packet	header	and	the	UDP	
transport	header - this	is	an	instance	of	the	IPv6	“Extension	Header”



IPv6 Fragmentation Extension Header Handling 

The	extension	header	sits	between	the	IPv6	packet	header	and	the	
upper	level	protocol	header	for	the	leading	fragged	packet,	and	sits	
between	the	header	and	the	trailing	payload	frags	for	the	trailing	
packets

Practically,	this	means	that	transport-protocol	aware	packet	
processors/switches	need	to	decode	the	extension	header	chain,	if	its	
present,	which	can	consume	additional	cycles	to	process/switch	a	
packet	– and	the	additional	time	is	not	predictable.	For	trailing	frags	
there	is	no	transport	header!

Or	the	unit	can	simply	discard	all	Ipv6	packets	that	contain	extension	
headers!

Which	is	what	a	lot	of	transport	protocol	sensitive	IPv6	deployed	
switching	equipment	actually	does	(e.g.	load	balancers!)

IPv6 header

Payload

TCP/UDP xtn header

Fragmentation xtn header



IPv6 Fragmentation Extension Header Handling 

There	is	a	lot	of	“drop”	behaviour in	the	IPv6	Internet	for	Fragmentation	Extension	
headers

RFC7872	– recorded	drop	rates	of	30%	- 40%

This	experiment	sent	fragmented	packets	towards	well-known	servers	and	observed	
whether	the	server	received	and	reconstructed	the	fragmented	packet

But	sending	fragmented	queries	to	servers	is	not	all	that	common	– the	reverse	
situation	of	big	responses	is	more	common

So	what	about	sending	fragmented	packets	BACK from	servers	– what’s	the	drop	
rate	of	the	reverse	case?



IPv6 Fragmentation Extension Header Handling 

We	used	an	ad-based	measurement	system,	using	a	custom	packet	
fragmentation	wrangler	as	a	front	end	to	a	DNS	and	Web	server	to	
test	IPv6	fragmentation	behaviour

Client

DNS Resolver IPv6 DNS Server

IPv6 NGINX Server

IPv6 ‘Fragmenter’DNS Goo



We	used	an	ad-based	measurement	system,	using	a	custom	packet	
fragmentation	wrangler	as	a	front	end	to	a	DNS	and	Web	server	to	
test	IPv6	fragmentation	behaviour

IPv6 Fragmentation Extension Header Handling 

Client

DNS Resolver
IPv6 ‘Fragmenter’DNS Goo

We use a technique of “glueless” delegation and 
fragmentation of the NS query response to allow us to 
detect if the DNS resolver received the fragmented response

We track TCP ACKs at the server to see if the client 
received the fragmented TCP response

Client

DNS Resolver IPv6 DNS Server

IPv6 NGINX Server



IPv6 Fragmentation Extension Header Handling 

Our	Experiments	were	run	across	some	40M	individual	sample	points	
in	August	2017:

37% of	end	users	who	used	IPv6-capable	DNS	resolvers	could	not	
receive	a	fragmented	IPv6	DNS	response



IPv6 Fragmentation Extension Header Handling 

Our	Experiments	were	run	across	some	40M	individual	sample	points	
in	August	2017:

37%	of	end	users	who	used	IPv6-capable	DNS	resolvers	could	not	
receive	a	fragmented	IPv6	DNS	response

20% of	IPv6-capable	end	users	could	not	receive	a	fragmented	
IPv6	packet



IPv6 Fragmentation is very unreliable 

Why	don’t	we	see	this	unreliability	in	today’s	IPv6	networks	
affecting	user	transactions?



IPv6 Fragmentation is very unreliable 

Why	don’t	we	see	this	unreliability	in	today’s	IPv6	networks	
affecting	user	transactions?

Because	IPv4	papers	over	the	problem!



IPv6 Fragmentation is very unreliable 

Why	don’t	we	see	this	unreliability	in	today’s	IPv6	networks	
affecting	user	transactions?

Because	IPv4	papers	over	the	problem!

In	a	Dual-Stack	environment	there	is	always	the	option	to	flip	to	
use	IPv4	if	you	are	stuck	with	Ipv6.

The	DNS	does	this,	and	Happy	Eyeballs	does	this

So	there	are	few	user-visible	problems	in	a	dual	stack	
environment

This	means	that	there	is	no	urgent	imperative	to	correct	these	
underlying	problems	in	deployed	IPv6	networks



IPv6 Fragmentation is very unreliable 

Why	don’t	we	see	this	unreliability	in	today’s	IPv6	networks	
affecting	user	transactions?

Because	IPv4	papers	over	the	problem!

In	a	Dual-Stack	environment	there	is	always	the	option	to	flip	to	
use	IPv4	if	you	are	stuck	with	Ipv6.

The	DNS	does	this,	and	Happy	Eyeballs	does	this

So	there	are	few	user-visible	problems	in	a	dual	stack	
environment

This	means	that	there	is	no	urgent	imperative	to	correct	these	
underlying	problems	in	deployed	IPv6	networks



Living without IPv6 Fragmentation

If	we	apparently	don’t	want	to	fix	this,	can	we	live	with	it?

We	are	living	with	it	in	a	Dual	Stack	world,	because	IPv4	just	makes	it	
all	better!

But	what	happens	when	there	is	no	IPv4	left?



Living without IPv6 Fragmentation

If	we	apparently	don’t	want	to	fix	this,	can	we	live	with	it?

We	are	living	with	it	in	a	Dual	Stack	world,	because	IPv4	just	makes	it	
all	better!

But	what	happens	when	there	is	no	IPv4	left?

TCP	can	work	as	long	as	IPv6	sessions	use	conservative	MSS	sizes

UDP	can	work	as	long	as	UDP	packet	sizes	are	capped	so	as	to	avoid	
fragmentation

We have to avoid IPv6 Fragmentation!



Living without IPv6 Fragmentation

TCP	can	work	as	long	as	IPv6	sessions	use	conservative	MSS	sizes

UDP	can	work	as	long	as	UDP	packet	sizes	are	capped	so	as	to	avoid	
fragmentation

We have to avoid IPv6 Fragmentation!



Living without IPv6 Fragmentation

TCP	can	work	as	long	as	IPv6	sessions	use	conservative	MSS	sizes

UDP	can	work	as	long	as	UDP	packet	sizes	are	capped	so	as	to	avoid	
fragmentation

We have to avoid IPv6 Fragmentation!

DNSSEC!



What can we do about it?

A. Get all the deployed routers and switches to 
deliver ICMPv6 packets and accept packets with 
IPv6 Fragmentation Headers



What can we do about it?

B. Get all the deployed routers and switches to alter 
the way IPv6 manages packet fragmentation



What can we do about it?

C. Move the DNS off UDP



Pick one?

All	of	these	options	have	a	certain	level	of	pain,	cost	and	potential	
inconvenience

Its	hard	to	work	out	what	is	the	best	course	of	action,	but	it	seems	like	
a	lot	of	extra	effort	if	we	take	on	all	three	at	once!



For TCP …

Working	around	this	issue	in	TCP	can	be	as	simple	as	a	very	careful	
selection	of	a	default	IPv6	TCP	MSS

• Large	enough	enough	to	offer	a	tolerable	data	carriage	efficiency
• Small	enough	to	avoid	Path	MTU	issues

And	perhaps	you	might	want	to	to	support	TCP	path	MTU	discovery	
(RFC	4281)



For TCP …

But	you	have	to	take	into	account	the	observation	that	Path	MTU	
discovery	without	reliable	ICMPv6	signaling	takes	a	number	of	Round	
Trip	Times	(delay)
And	time	is	something	no	application	designer	has	enough	of	to	waste	
on	probing	path	characteristics

So	choose	your	TCP	MSS	very	carefully

Hint:	Smaller	TCP	MSS	sizes	are	Better	in	IPv6!



For UDP …

• Working	around	this	issue	can	be	challenging	with	UDP
• ICMPv6	Packet	Too	Big	filtering	causes	silence
• Fragment	drop	is	silent	drop

• Which	means	that	protocols	need	to	understand	timeouts

• An	effort	to	work	around	this	necessarily	involves	application-level	
adaptation	to	pass	large	responses	without	relying	on	UDP	packet	
fragmentation



If we can’t fix IPv6

• And	we	can’t	fix	end-to-end	transport

• Then	all	that’s	left	is	to	look	at	the	application	protocol	and	see	if	we	
can	re-define	the	protocol	behaviour	in	a	way	eliminates	
fragmentation	behaviour



“Old Style” DNS

• The	original	DNS	protocol	had	this	behaviour
• If	the	DNS	payload	was	<=	512	bytes	send	the	answer	over	UDP
• Otherwise	send	as	much	as	will	fit	in	512	bytes	set	the	truncate	bit
• The	receiver	is	meant	to	re-query	using	TCP	upon	receipt	of	a	truncated	response

• Why	did	we	change	this	behaviour?
• Because	we	thought	that	fragmentation	was	“safe”	and	TCP	was	too	costly
• So	we	added	Extension	options	for	DNS	to	signal	it	was	OK	to	send	large	
fragmented	UDP	responses

• But	its	not	OK



Large DNS Responses and IPv6

Change	the	protocol	behaviour?
• Shift	Additional	Records	into	additional	explicit	UDP	query/response	transactions	
rather	than	bloating	the	original	DNS	response

• Perform	UDP	MTU	discovery	using	EDNS(0)	UDP	Buffer	Size	variations	as	a	probe
• Add	a	truncated	minimal	UDP	response	to	trail	a	fragmented	response	(ATR)

Change	the	transport?
• DNS	over	TCP	by	default
• DNS	over	TLS	over	TCP	by	default
• DNS	over	QUIC
• Devise	some	new	DNS	framing	protocol	that	uses	multiple	packets	instead	of	
fragmentation



Where now?

• We	have	a	decent	idea	of	the	problem	space	we	need	to	resolve
• We’d	prefer	a	plan	that	allows	each	of	us	to	work	independently	
rather	than	a	large	scale	orchestrated	common	change

• We’re	not	sure	we	can	clean	up	all	the	ICMPv6	filters	and	EH	packet	
droppers	in	the	IPv6	network

• And	it	sure	seems	a	bit	late	in	the	day	to	contemplate	IPv6	protocol	
changes

• Which	means	that	we	are	probably	looking	at	working	around	the	
problem	by	changing	the	behaviour of	applications	



What do the RFC’s say?



What do the RFC’s say?



What do the RFC’s say?



What do the RFC’s say?



What do the RFC’s say?



But would that be enough?

• Is	the	root	cause	problem	with	the	way	our	IPv6	networks	handle	
Fragmented	IPv6	packets?

• Or	with	the	way	our	IPv6	networks	handle	IPv6	packets	with	
Extension	Headers?

• The	data	presented	here	suggests	that	EH	drop	could	be	the	
underlying	significant	issue	here

• Perhaps	we	might	want	to	think	about	advice	to	host	stacks	and	
applications	to	avoid	EH	altogether!

• Including	fragmentation!



What was the question again?

Oh	yes,	that’s	right:

“Are	we	ready	for	an	IPv6-only	Internet?”

It	appears	that	the	answer	is	“no,	not	if	we	want	the	DNS	to	work!”



What was the question again?

Oh	yes,	that’s	right:

“Are	we	ready	for	an	IPv6-only	Internet?”

It	appears	that	the	answer	is	“no,	not	if	we	want	the	DNS	to	work!”



Thanks!


