Measuring KSK Roll Readiness

Geoff Huston APNIC Labs

Measurement Objective

What number of users are at risk of being impacted by the KSK Roll?

- There are two risk elements for resolvers:
 - Unable to receive a 1,414 octet UDP response from the root servers (query for DNSKEY RR from the root zone)
 - Failure to follow RFC5011 key introduction procedure
- In either case the resolver outcome is the same: Not loading the incoming trust key into the local trusted key store
- And if the user passes queries only to these affected resolvers than the roll will cause a loss of DNS service

Measuring Resolvers

Getting resolvers to report on their local trusted key state

 Resolvers that support the RFC8145 signal mechanism periodically include the key tag of their locally trusted keys into a query directed towards the root servers

But:

- The signal is only visible to root servers
- DNS forwarders confuse the attribution of the signal
- And the number of users that rely on reporting resolvers is not apparent
- And it is unclear whether the user has alternate resolvers that they can use

User-Visible Resolver Measurement

Can we devise a DNS query that could reveal the state of the trusted keys of the resolvers back to the user?

- Not within the current parameters of DNSSEC and/or resolver behaviour
- But what if we could change resolver behaviour?
 - Just as RFC8145 required a change in resolver behaviour
- What about a change to the resolver's reporting of validation outcome depending on the resolver's local trusted key state?
 - If a query contains the label "_is-ta-<key-tag>" then a validating resolver will report validation failure if the key is NOT in the local trusted key store
 - If a query contains the label "_not-ta-<key-tag>" then a validating resolver will report validation failure if the key IS in the local trusted key store

User-Visible Resolver Measurement

Three DNS queries:

- 1. _is-ta-4066.<some.signed.domain>
- 2. _not-ta-4066.<some.signed.domain>
- 3. <badly-signed>.<some.signed.domain>

Single Resolver Analysis:

Resolver Type	Query 1	Query 2	Query 3
Loaded New KSK	А	SERVFAIL	SERVFAIL
NOT loaded New KSK	SERVFAIL	А	SERVFAIL
Mechanism not supported	А	А	SERVFAIL
Not validating	А	А	А

User-Visible Resolver Measurement

Multiple Resolver Analysis

A SERVFAIL response will cause the use to repeat they query to other configured resolvers. In a multi-resolver scenario, and where forwarders are used we can still determine if the user will be impacted by the KSK roll

User Impact	Query 1	Query 2	Query 3
OK	А	SERVFAIL	SERVFAIL
NOT OK	SERVFAIL	А	SERVFAIL
UNKNOWN	Α	А	SERVFAIL
	SERVFAIL	SERVFAIL	SERVFAIL
NOT Impacted	А	А	А

Measuring User Impact

- Create these tests in a scripted web page and allow users to test the state of their resolvers
- Load these tests into an online ad campaign and use the ad to pass the test to millions of users
 - If the user can resolve Query 1, and SERVFAILs on Query 2 and Query 3 then the user is able to validate using the nominated key as a trusted key
 - If the user SERVFAILS on Query 1, resolves Query 2 and SERVFAILs on Query 3 then the user is unable to validate using the nominated key as a trusted keys
 - Otherwise if the user SERVFAILS on Query 3 then the result is indeterminate

Privacy and Security Considerations

- This test itself does not reveal which resolvers are used by end users in resolving names
- The query itself need not contain any end user identifying material
- The methodology never changes "insecure" to "authenticated" it will only change "authenticated" to "insecure" depending on the resolver's local trusted key state when resolving certain labels
- Anyone can set up a test condition within their delegated part of the DNS
- The results of the test are passed back only to the user in the form of a resolution outcome

Internet Draft

draft-huston-kskroll-sentinel

[Docs] [txt pdf] [Tracker] [Email] [Diff1] [Diff2] [Nits]

DNSOP	G. Huston
Internet-Draft	J. Damas
Intended status: Standards Track	APNIC
Expires: April 11, 2018	W. Kumari
	Google

October 8, 2017

A Sentinel for Detecting Trusted Keys in DNSSEC draft-huston-kskroll-sentinel-01.txt

Abstract

The DNS Security Extensions (DNSSEC) were developed to provide origin authentication and integrity protection for DNS data by using digital signatures. These digital signatures can be verified by building a chain of trust starting from a trust anchor and proceeding down to a particular node in the DNS. This document specifies a mechanism that will allow an end user to determine the trusted key state of the resolvers that handle the user's DNS gueries.