IP Addresses in 2016

Geoff Huston APNIC

EAPRICOT2017 APNIC 43

IPv6

E APRICOT 2017 APNIC 43

IPv6 Allocations by RIRs

IPv6 Allocations by RIRs

IPv6 Allocated Addresses

IPv6 Address Allocations 2006 - 2016

IPv6 Allocated Addresses

IPv6 Address Allocations 2006 - 2016

Where did the IPv6 addresses go?

Volume of Allocated iPv6 Addresses (using units of 132s) per country, per year

Rank	2012		2013		2014		2015		2016	
1	Argentina	4,178	United States	12,520	United States	5,213	South Africa	4,440	United Kingdom	9,571
2	Egypt	4,098	China	4,135	China	2,126	China	1,797	Germany	1,525
3	China	3,136	United Kingdom	784	United Kingdom	1,032	Germany	1,245	Netherlands	1,312
4	United States	1,337	Germany	663	Brazil	856	United Kingdom	1,204	United States	1,137
5	Italy	641	Russian	518	Germany	713	Netherlands	1,009	Russian Federation	1,005
6	Germany	452	Netherlands	480	Netherlands	694	Russian Federation	832	France	926
7	Russian Federation	413	Brazil	444	Russian Federation	636	Brazil	746	Brazil	727
8	United Kingdom	373	France	406	France	409	Italy	699	Spain	702
9	Canada	321	Italy	344	Italy	399	United States	640	Italy	679
10	Brazil	283	Switzerland	272	Switzerland	352	France	629	China	596

APRICOT2017 APNIC 43

Where did the IPv6 addresses go?

Advertised vs Unadvertised

IPv6 - Advertised vs Unadvertised

Advertised : Unadvertised (%)

IPv6 - Advertised : Unadvertised Ratios

Less than 8% of allocated IPv6 address space is visible as a

#apricot2017

APRICOT2017 APNIC 43

Total IPv6 Holdings by country

Rank	СС	Allocated	Advertised	Ratio	Country
		/325	/325	0.00/	
1	US	43,030	138	0.3%	USA
2	CN	21,196	29	0.1%	China
3	GB	17,139	2,148	12.5%	UK
4	DE	16,107	226	1.4%	Germany
5	FR	11,432	38	0.3%	France
6	JP	9,415	93	1.0%	Japan
7	AU	8,864	4,109	46.4%	Australia
8	IT	7,143	50	0.7%	Italy
9	SE	5,736	4,148	72.3%	Sweden
10	KR	5,251	29	0.6%	Rep. Korea
11	NL	4,939	600	12.2%	Netherlands
12	AR	4,793	4	0.1%	Argentina
13	ZA	4,640	9	0.2%	South Africa
14	EG	4,105	4	0.1%	Egypt
15	RU	3,954	6	0.2%	Russia
16	ΡL	3,740	31	0.8%	Poland
17	BR	3,651	19	0.5%	Brazil
18	ES	2,800	9	0.3%	Spain
19	ΤW	2,359	2,159	91.5%	Taiwan
20	СН	2,090	111	5.3%	Switzerland
21	NO	1,618	286	17.7%	Norway
22	IR	1,491	3	0.2%	Iran
23	TR	1,326	1	0.1%	Turkey
24	CZ	1,319	41	3.1%	Czech Rep.
25	UA	1,082	1	0.1%	Ukraine

There is currently considerably disparity between countries as to the ratio between allocated and advertised IPv6 blocks,

Taiwan, Sweden, Australia, Norway, UK and Netherlands appear to advertise a visible part of their allocated IPV6 address hoblings

Other countries have a far lower ratio of advertised to allocated address blocks

Why?

EAPRICOT2017 APNIC 43

IPv6 Allocations

Many IPv6 address holders appear to want to avoid being "caught short" with IPv6, and have requested IPv6 address blocks that are far larger than their current immediate needs for public IPv6 addresses to be used across the public Internet

This is consistent with an overall address management framework that is not overly concerned with conservation in use at present, so address allocations are not constraint driven

This, in turn, is consistent with the IPv6 design choice to use a very large address field, so that such liberal address allocation practices could be sustained for many decades

IPv4

E APRICOT 2017 APNIC 43

Addressing V4 Exhaustion

- We have been predicting that the exhaustion of the free pool of IPv4 addresses would eventually happen for the past 25 years!
- And, finally, we've now hit the bottom of the address pool!
 - APNIC, RIPE NCC, LACNIC and ARIN are now empty of general use IPv4 addresses
 - RIPE and APNIC are operating a Last /8
 - We now have just AFRINIC left with more than a /8 remaining

IANA Unallocated Address Pool Exhaustion: 03-Feb-2011

Projected RIR Address Pool Exhaustion Dates:

RIR	Projected Exhaustion Date	Remaining Addresses in RIR Pool (/8s)
APNIC:	19-Apr-2011 (actual)	0.4271
RIPE NCC:	14-Sep-2012 (actual)	0.7817
LACNIC:	10-Jun-2014 (actual)	0.0158
ARIN:	24 Sep-2015 (actual)	
AFRINIC:	26-Jun-2018	1.2368

Allocations in the Last Years of IPv4

IPv4 Address Allocations 2006 - 2016

Allocations in the Last Years of IPv4

Where did the Addresses Go?

Volume of Allocated iPv4 Addresses (using units of millions of 132s) per year

Rank		2012		2013		2014		2015		2016
1	China	28.2	USA	25.0	USA	24.5	USA	7.6	Morocco	3.1
2	Canada	16.7	Brazil	17.4	Brazil	10.9	Egypt	7.4	Seychelles	2.1
3	Brazil	8.4	Colombia	3.8	Morocco	2.6	Seychelles	2.1	USA	1.7
4	Russia	5.3	Argentina	1.6	Colombia	2.1	Sth Africa	2.0	China	1.3
5	Iran	4.5	Egypt	1.6	Sth Africa	1.7	Tunisia	1.8	Brazil	1.3
6	Germany	3.4	Canada	1.4	Egypt	1.6	Brazil	1.4	Sth Africa	1.2
7	Sth Africa	3.4	Nogeria	1.2	China	1.5	China	1.3	India	1.1
8	Italy	3.3	Chile	1.1	Canada	1.4	India	1.3	Egypt	1.1
9	Colombia	2.6	Mexico	1.1	Kenya	1.4	Canada	1.1	Kenya	1.1
10	Romania	2.6	Seychelles	1	Mexico	1.1	Ghana	0.6	Algeria	1.1

LACNIC ran out in 2014

T ARIN ran out T in 2015

What's Left? (1 March 2017)

	Available /32s
APNIC	6,935,808
RIPE NCC	12,673,608
ARIN	0
LACNIC	68,096
AFRINIC	18,097,408

Reserved /32s

4,074,240 1,045,312 6,115,072 4,924,672 2,998,272

Current Run Out

Last /8: early 2020 Last /8: early 2021

General: June 2018

37,774,920 19,157,568

IPv4: Advertised vs Unadvertised

APRICOT2017 APNIC 43

IPv4: Unadvertised Addresses

IPv4 Address Disposition: Unadvertised Address Pool 2016

EAPRICOT2017

APNIC 43

IPv4:Assigned vs Recovered

2.5 Growth in Advertised Addresses 1.5 RIR Allocations Address Count (/8s) 1.4 /8s 0.5 4 0.5 18s -0.5 Change in the Unadvertised Address Pool -1 -1.5 Jan-17 Jan-16 Mar-16 May-16 Jul-16 Sep-16 Nov-16 Date

IPv4 Address Disposition: RIR Allocations, AUnadvertised Address Pool and Advertised Addresses 2016

APNIC 43

The IPv4 After-Market: Address Transfers

- There is a considerable residual demand for IPv4 addresses following exhaustion
 - IPv6 is not a direct substitute for the lack of IPv4
- Some of this demand is pushed into using middleware that imposes address sharing (Carrier Grade NATS, Virtual Hosting, etc)
- Where there is no substitute then we turn to the aftermarket
- Some address transfers are "sale" transactions, and they are entered into the address registries
- Some transfers take the form of "leases" where the lease holder's details are not necessarily entered into the address registry

Registered Address Transfers

Receiving RIR	2012	2013	2014	2015
ARIN	79	31	58	277
APNIC	255	206	437	514
RIPE NCC	10	171	1,050	2,852

Number of registered 2016 Address transfers per year 727 581 2,411

2012	2013	2014	2015	2016
6,728,448	5,136,640	4,737,280	37,637,888	15,613,952
3,434,496	2,504,960	4,953,088	9,836,288	7,842,816
65,536	1,977,344	9,635,328	10,835,712	9,220,864

APRICOT2017 APNIC 43

How old are transferred addresses?

Age Distribution of Transferred Addresses by Year

But

The RIR Transfer Logs are not the entire story:

- For example, the RIPE NCC's address transfer logs appear not to contain records of transfers of legacy space
- Address leases and similar "off market" address transactions are not necessarily recorded in the RIRs' transfer logs

Can BGP tell us anything about this missing data?

A BGP View of Addresses

Lets compare a snapshot of the routing table at the start of 2016 with a snapshot taken at the end of the year.

EAPRICOT2017 APNIC 43

BGP Changes Across 2016

	Jan-16	Jan-17	Delta	Unchanged	Re-Home	Removed	Added	
Announcements	586,918	646,059	59,141	502,846	16,928	67,504	126,645	
Root Prefixes	286,249	309,092	22,843	252,411	10,803	22,080	46,238	
Address Span (/8s)	156.35	158.40	2.04	147.31	2.52	5.58	8.57	
More Specifics	300,669	336,967	36,298	250, <mark>1</mark> 35	6,125	45,424	80,407	
Address Count (/8s)	51.86	56.04	4.18	47.06	0.81	4.94	8.17	
Whi addr tran	at is the resses a sfer he	e level, nd the	of correlation be	stween .	has	J		-

BGP Changes Across 2016

8,663 announcements are listed in the transfer logs

117,982 announcements are NOT listed in the transfer logs

E APRICOT 2017 APNIC 43

BGP Changes Across 2016

Announcements	Jan-16 586,918	Jan-17 646,059	Delta 59,141	Unchanged 502,846	Re-Home 16,928	Removed 67,504	Added 126,645
Root Prefixes	286,249	309,092	22,843	252,411	10,803	22,080	46,238
Rehomed		Listed as Transferred	Un	Listed			
All		1,539		15,389			9%
Root Prefixes		1,184		9,551			11%
Removed							
All		3,287		64,287			5%
Root Prefixes		1,877		20,203			9%
Added							
All		8,663		117,982			7%
Root Prefixes		4,617		41,621			10%

APRICOT2017 APNIC 43

"Age" of Shifted Addresses

Age Distribution of Altered Addresses

E APRICOT 2017

APNIC 43

"Age" of Shifted Addresses

- Some 20% of addresses that changed their routing state in 2016 are "legacy" allocated addresses that are more than 20 years "old"
- Addresses older than 20 years look to be more stable than the registry "norm"
- Addresses allocated in the past 18 months are more likely to have been announced (naturally!)
- Addresses that are 5 10 years old are more likely to have been removed from the routing system in 2016

BGP Data and Transfer Logs

- Some 5-10 % of address changes seen across 2016 (announced, withdrawn and re-homed) are listed in the RIR transfer logs
- That does NOT imply that the remaining 90-95% of address transfers are all unrecorded transfers
 - But it does point to a larger body of addresses that have changed their advertisement status in one way or another, some of which may have involved leasing or other forms of address movement, that are not recorded in the transfer logs

Address Movement and the Registries

- It is not clear from this analysis what has happened in the case of the other addresses. This could include:
 - "normal" movement of edge networks between upstream providers (customer 'churn')
 - Occluded multi-homing
 - Address movement within a distributed edge network
 - Address leasing
 - Address transfers not recorded in the transfer registries
- · More analysis is required to understand what is happening here

Thank You!

E APRICOT 2017 APNIC 43