
2017#apricot2017

RSA and ECDSA

Geoff Huston
APNIC

2017#apricot2017

It’s all about Cryptography

2017#apricot2017

Why use Cryptography?

Public	key	cryptography	can	be	used	in	a	number	of	ways:
– protecting	a	session	from	third	party	eavesdroppers

Encryption	using	a	session	key	that	is	known	only	to	the	parties	to	the	conversation

– protecting	a	session	from	interference
Injection	(or	removal)	of	part	of	a	session	can	only	be	undertaken	by	the	parties	to	the	
session

– authentication	and	non-repudiation
What	is	received	is	exactly	what	the	other	party	sent,	and	cannot	be	repudiated	

2017#apricot2017

Symmetric Crypto

A	symmetric	crypto	algorithm	uses	the	same	key	to
– Convert	a	plaintext	message	to	a	crypted message
– Convert	a	crypted message	to	its	plaintext	message

• They	are	generally	fast	and	simple

BUT	they	use	a	shared	key
– This	key	distribution	problem	can	be	a	critical	weakness	in	the	crypto	
framework

2017#apricot2017

Asymmetric Crypto

This	is	a	class	of	asymmetric	transforms	applied	to	a	message	such	that:

Messages	encrypted	using	Key	A	and	algorithm	X	can	only	be	translated	back	to	the	
original	message	using	Key	B	and	algorithm	X

This	also	holds	in	reverse

This	can	address	the	shared	key	problem:

If	I	publish	Key	A	and	keep	Key	B	a	secret	then	you	can	send	me	a	secret	by	
encrypting	it	using	my	public	key	A

2017#apricot2017

The Asymmetric Crypto Challenge

Devise	an	algorithm	(encoding)	and	
keys	such	that:
–Messages	encoded	with	one	key	can	
only	be	decoded	with	the	other	key

– Knowledge	of	the	value	of	one	key	does	
not	infer	the	value	of	the	other	key

http://bit.ly/2iQ0oi7

2017#apricot2017

RSA

Select	two	large	(>	256	bit)	prime	numbers,	p and	q,	then:
n	=	p.q
⏀(n)	=	(p-1).(q-1)	(the	number	of	numbers	that	are	relatively	prime	to	n)

Pick	an	e	that	is	relatively	prime	to	⏀(n)
The	PUBLIC	KEY	is	<e,n>

Pick	a	value	for	d such	that	d.e =	1	mod	⏀(n)
The	PRIVATE	KEY	is	<d,n>

For	any	x,			xde ≡ x	(mod	n)

2017#apricot2017

Why does RSA work?

Encryption	using	the	public	key	consists	of	taking	a	message	x and	
raising	it	to	the	power	e

Crypt	=	xe

Decryption	consists	of	taking	an	encrypted	message	and	raising	it	
to	the	power	d,	mod	n

Decrypt	=	Cryptd mod	n	=	(xe)d mod	n	=	xed mod	n	=	x

Similarly,	one	can	encrypt	a	message	with	the	private	key	(xd)	and	
decrypt	with	the	public	key	((xd)	e mod	n	=	x)

2017#apricot2017

Why does RSA work?

If	you	know	e and	n	(the	public	key)	then	how	can	you	calculate	d (the	
private	key)?

Now	d.e =	1	mod	⏀(n)

If	you	know	⏀(n)	you	can	calculate	d

But	⏀(n)	=	(p-1).(q-1),	where	p.q =	n

i.e.	you	need	to	find	the	prime	factors	of	n,	a	large	composite	number	that	
is	the	product	of	two	primes

2017#apricot2017

The ‘core’ of RSA

(xe)d ≡	x mod n

As	long	as	d and	n are	relatively	large,	and	n is	
the	product	of	two	large	prime	numbers,	then	
finding	the	value	of	d when	you	already	know	
the	values	of	e and	n is	computationally	
expensive

2017#apricot2017

The ‘core’ of RSA

(xe)d ≡	x mod n

As	long	as	d and	n are	relatively	large,	and	n is	
the	product	of	two	large	prime	numbers,	then	
finding	the	value	of	d when	you	already	know	
the	values	of	e and	n is	computationally	
expensive

2017#apricot2017

The ‘core’ of RSA

(xe)d ≡	x mod n

As	long	as	d and	n are	relatively	large,	and	n is	
the	
product	of	two	large	prime	numbers,	then	
finding	the	value	of	d when	you	already	know	
the	values	of	e and	n is	computationally	
expensive

2017#apricot2017

Why is this important?

Because much of the foundation of
Internet Security rests upon this
relationship

2017#apricot2017

How big can RSA go?

In	theory	we	can	push	this	to	very	large	sizes	of	n to	generate	RSA	
private	keys

The	algorithm	is	not	itself	arbitrarily	limited	in	terms	of	key	size

But	as	the	numbers	get	larger	there	is	higher	computation	overhead	to	
generate	and	manipulate	these	keys

So	we	want	it	large	enough	not	to	be	‘broken’	by	most	forms	of	brute	
force,	but	small	enough	to	be	computed	by	our	everyday	processors

2017#apricot2017

How big should RSA go?

You	need	to	consider	time as	well

How	long	do	you	want	or	need	your	secret	to	remain	a	secret?

Because	if	the	attacker	has	enough	time	a	brute	force	attack	may	work

Also	time	is	on	the	attacker’s	side:	keys	that	are	considered	robust	today	may	not	
be	as	robust	tomorrow,	assuming	that	feasible	compute	capabilities	rise	over	time

So	you	want	to	pick	a	key	size	that	is	resistant	to	attempts	to	brute	force	the	
key	both	today	and	tomorrow

2017#apricot2017

Bigger and bigger?

Well,	no	– the	larger	the	key	sizes	compared	to	compute	
capabilities	means:
– Longer	times	to	generate	keys
– Longer	times	to	encrypt	(and	decrypt)	messages
–More	space	to	represent	the	key	values

So	you	need	to	use	big	keys,	but	no	bigger	then	necessary!

2017#apricot2017

Be Specific!

Time	to	consult	the	experts!

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

2017#apricot2017

RSA is everywhere…

2017#apricot2017

My Bank…(I hope!)

2017#apricot2017

TLS: Protecting the session

https://rhsecurity.wordpress.com/tag/tls/

2017#apricot2017

The Key to My Bank

Yes, the fine print says my

bank is using a 2048-bit RSA

Public key to as the foundation

of the session key used to

secure access to my bank

2017#apricot2017

I trust its my bank because …

• The	server	has	demonstrated	knowledge	of	a	private	key	that	
is	associated	with	a	public	key	that	I	have	been	provided

• The	public	key	has	been	associated	with	a	particular	domain	
name	by	a	Certificate	Authority

• My	browser	trusts	that	this	Certificate	Authority	never	lies	
about	such	associations

• So	if	the	server	can	demonstrate	that	it	has	the	private	key	
then	my	browser	will	believe	that	its	my	bank!

2017#apricot2017

DNSSEC and the DNS

Another	major	application	for	crypto	in	the	Internet	is	securing	
the	DNS

You	want	to	be	assured	that	the	response	you	get	to	from	DNS	
query	is:
– Authentic
– Complete
– Current

2017#apricot2017

DNSSEC Interlocking Signatures

.	(root)

.com

.example.com

www.example.com

.	Key-Signing	Key	– signs	over

.	Zone-Signing	Key	– signs	over

DS	for	.com	(Key-Signing	Key)

.com	Key-Signing	Key	– signs	over

.com	Zone-Signing	Key	– signs	over

DS	for	example	.com	(Key-Signing	Key)

example.com Key-Signing	Key	– signs	over

example.com Zone-Signing	Key	– signs	over

www.example.com

2017#apricot2017

DNSSEC Interlocking Signatures

.	(root)

.com

.example.com

www.example.com IN	A	192.0.1

.	Key-Signing	Key	– signs	over

.	Zone-Signing	Key	– signs	over

DS	for	.com	(Key-Signing	Key)

.com	Key-Signing	Key	– signs	over

.com	Zone-Signing	Key	– signs	over

DS	for	example	.com	(Key-Signing	Key)

example.com Key-Signing	Key	– signs	over

example.com Zone-Signing	Key	– signs	over

www.example.com

2017#apricot2017

DNSSEC Interlocking Signatures

.	(root)

.com

.example.com

www.example.com IN	A	192.0.1

.	Key-Signing	Key	– signs	over

.	Zone-Signing	Key	– signs	over

DS	for	.com	(Key-Signing	Key)

.com	Key-Signing	Key	– signs	over

.com	Zone-Signing	Key	– signs	over

DS	for	example	.com	(Key-Signing	Key)

example.com Key-Signing	Key	– signs	over

example.com Zone-Signing	Key	– signs	over

www.example.com
Is the signature for this record valid?

Is the ZSK for example.com valid?

Is the KSK for example.com valid?

Is this DS equal to the hash of the KSK?
Is the signature for this record valid?

Is the ZSK for .com valid?

Is the KSK for .com valid?

Is this DS equal to the hash of the KSK?
Is the signature for this record valid?

Is the ZSK for . valid?

Is the KSK for . valid?

2017#apricot2017

DNSSEC Interlocking Signatures

.	(root)

.com

.example.com

www.example.com IN	A	192.0.1

.	Key-Signing	Key	– signs	over

.	Zone-Signing	Key	– signs	over

DS	for	.com	(Key-Signing	Key)

.com	Key-Signing	Key	– signs	over

.com	Zone-Signing	Key	– signs	over

DS	for	example	.com	(Key-Signing	Key)

example.com Key-Signing	Key	– signs	over

example.com Zone-Signing	Key	– signs	over

www.example.com
Is the signature for this record valid?

Is the ZSK for example.com valid?

Is the KSK for example.com valid?

Is this DS equal to the hash of the KSK?
Is the signature for this record valid?

Is the ZSK for .com valid?

Is the KSK for .com valid?

Is this DS equal to the hash of the KSK?
Is the signature for this record valid?

Is the ZSK for . valid?

Is the KSK for . valid?

As long as you have a valid
local trust anchor for the
root zone then you can
validate a signed DNS
response by constructing
this backward path to the
local root trust anchor

2017#apricot2017

A DNSSEC response using RSA

$ dig +dnssec u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net

; <<>> DiG 9.9.6-P1 <<>> +dnssec u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25461
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net. IN A

;; ANSWER SECTION:
u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net. 1 IN A 199.102.79.186
u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net. 1 IN RRSIG A 5 4 3600 20200724235900 20130729104013 1968 5a593.z.dotnxdomain.net. ghHPoQd71aZtsdH823eWP16g07q80UJAcIcaPrLl9t3lljqecmjbJzfT prxiRetxvfJSoOelTVKNTiT7vUI0Qk8jB40gwYYnZ9GnFKb9RQOV

;; AUTHORITY SECTION:
33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207c36.a095a7ae.1dc33700.103ad556.3a564678.16395067.a12ec545.6183d935.c68cebfb.41a4008e.4f291b87.479c6f9e.5ea48f86.7d1187f1.7572d59a.9d7d4ac3.06b70413.1706f018.0754fa29.9d24b07c.5a593.z.dotnxdomain.net. 1 IN NSEC z1
33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207c36.a095a7ae.1dc33700.103ad556.3a564678.16395067.a12ec545.6183d935.c68cebfb.41a4008e.4f291b87.479c6f9e.5ea48f86.7d1187f1.7572d59a.9d7d4ac3.06b70413.1706f018.0754fa29.9d24b07c.5a593.z.dotnxdomain.net. 1 IN RRSIG N
5a593.z.dotnxdomain.net. 3599 IN NS nsz1.z.dotnxdomain.net.
5a593.z.dotnxdomain.net. 3600 IN RRSIG NS 5 4 3600 20200724235900 20130729104013 1968 5a593.z.dotnxdomain.net. ntxWo5UwL1vQjOHY0z5DCVNDDScnd3Tglgd0PsBRRhk3B9iJOGH2orxl FRpOeefg7LmpWNtayJOH6nim58ggQU8U/+KZcoNwv0M5TUAo7IRFG+87 ARvw0lcHU9XMGUAr1wDxaicl2fhg

;; Query time: 1052 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Thu Mar 12 03:59:57 UTC 2015
;; MSG SIZE rcvd: 937

RSA	signed	response	– 937	octets

2017#apricot2017

$ dig +dnssec DNSKEY org

; <<>> DiG 9.11.0-P1 <<>> +dnssec DNSKEY org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 53713
;; flags: qr rd ra; QUERY: 1, ANSWER: 7, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;org. IN DNSKEY

;; ANSWER SECTION:
org. 900 IN DNSKEY 256 3 7 AwEAAXxsMmN/JgpEE9Y4uFNRJm7Q9GBwmEYUCsCxuKlgBU9WrQEFRrvA eMamUBeX4SE8s3V/
org. 900 IN DNSKEY 256 3 7 AwEAAayiVbuM+ehlsKsuAL1CI3mA+5JM7ti3VeY8ysmogElVMuSLNsX7 HFyq9O6qhZVJz54Teuzf2EGjO8cbK/fUbyzFW+4i4B
org. 900 IN DNSKEY 257 3 7 AwEAAcMnWBKLuvG/LwnPVykcmpvnntwxfshHlHRhlY0F3oz8AMcuF8gw 9McCw+BoC2YxWaiTpNPuxjSNhUlBtcJmcdkz3/r7PIn0oDf14ept1Y9p dPh8SbIBIWx50ZPfVRlj8oQXv2
org. 900 IN DNSKEY 257 3 7 AwEAAZTjbIO5kIpxWUtyXc8avsKyHIIZ+LjC2Dv8naO+Tz6X2fqzDC1b dq7HlZwtkaqTkMVVJ+8gE9FIreGJ4c8G1GdbjQgbP1
org. 900 IN RRSIG DNSKEY 7 1 900 20170207153219 20170117143219 3947 org. S6+vpFWz6hfPmvI7zxRa4NPLjre4Vow9mlAxmn1zS+bd0NuXFZQW9
org. 900 IN RRSIG DNSKEY 7 1 900 20170207153219 20170117143219 9795 org. iEyiroy02ljtH5hf5RIdf4aRSpbItnqdxlKbvGt6vLVjws3ZNPzMo
org. 900 IN RRSIG DNSKEY 7 1 900 20170207153219 20170117143219 17883 org. A2hLUswcas+W4h8gZYpAtUIjzcXYPfhFwXEiVMM6ELEHzCrDB4IN

;; Query time: 475 msec
;; SERVER: 203.133.248.1#53(203.133.248.1)
;; WHEN: Thu Jan 19 23:37:38 UTC 2017
;; MSG SIZE rcvd: 1625

Another DNSSEC response using RSA

RSA	signed	response	– 1,625	octets

2017#apricot2017

Not every application can tolerate
large keys…

The	DNS	and	DNSSEC	is	a	problem	here:
– including	the	digital	signature	increases	the	response	size
– Large	responses	generate	packet	fragmentation
– Fragments	are	commonly	filtered	by	firewalls
– IPv6	Fragments	required	IPv6	Extension	Headers,	and	

packets	with	Extension	Headers	are	commonly	filtered
– DNS	over	TCP	imposes	server	load
– DNS	over	TCP	is	commonly	filtered

If	you	can avoid	large	responses	in	the	DNS,	you	should!

2017#apricot2017

The search for small keys

• Large	keys	and	the	DNS	don’t	mix	very	well:
–We	try	and	make	UDP	fragmentation	work	reliably	(for	once!)
– Or	we	switch	the	DNS	to	use	TCP
– Or	we	look	for	smaller	keys

2017#apricot2017

Enter Elliptic Curves

y2 =	x3 +	ax +	b

2017#apricot2017

y2 =	x3 +	ax +	b

Enter Elliptic Curves

“It	is	not	immediately	obvious	why	
verification	even	functions	correctly.”	!!

2017#apricot2017

ECDSA P-256

Elliptic	Curve	Cryptography	allows	for	the	construction	
of	“strong”	public/private	key	pairs	with	key	lengths	
that	are	far	shorter	than	equivalent	strength	keys	using	
RSA	

A	256-bit	ECC	key	should	provide	comparable	security	
to	a	3072-bit	RSA	key

2017#apricot2017

ECDSA vs RSS

$ dig +dnssec u5221730329.s1425859199.i5075.vcf100.5a593.y.dotnxdomain.net

; <<>> DiG 9.9.6-P1 <<>> +dnssec u5221730329.s1425859199.i5075.vcf100.5a593.y.dotnxdomain.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61126
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;u5221730329.s1425859199.i5075.vcf100.5a593.y.dotnxdomain.net. IN A

;; ANSWER SECTION:
u5221730329.s1425859199.i5075.vcf100.5a593.y.dotnxdomain.net. 1 IN A 144.76.167.10
u5221730329.s1425859199.i5075.vcf100.5a593.y.dotnxdomain.net. 1 IN RRSIG A 13 4 3600 20200724235900 20150301105936 35456 5a593.y.dotnxdomain.net. IMXSIJ/uKixSAt8GXsh6Lm8CvEOmK5n/5bPgsMmqXl7wQTy29P3OiSrB gtNtX5NkxMzt/3ojq3NbUgXa4aAe5A==

;; AUTHORITY SECTION:
ns1.5a593.y.dotnxdomain.net. 1 IN NSEC x.5a593.y.dotnxdomain.net. A RRSIG NSEC
ns1.5a593.y.dotnxdomain.net. 1 IN RRSIG NSEC 13 5 1 20200724235900 20150301105936 35456 5a593.y.dotnxdomain.net. vM+5YEkAc8B9iYHV3ZO3r9v+RvICn3qfWRfneytLP+nHCOku66X31pzB TjHZWCeZzqOKCRHryJe8gqo6G8y/
5a593.y.dotnxdomain.net. 3598 IN NS ns1.5a593.y.dotnxdomain.net.
5a593.y.dotnxdomain.net. 3600 IN RRSIG NS 13 4 3600 20200724235900 20150301105936 35456 5a593.y.dotnxdomain.net. dzFik3O4HhiEg8TXcn3dCFdCfXCzLj7V0y5qIkCNYXYQ5EfoiWMhUh1s Lb9I0CQkOX9Ki/hPtgXRgn2MyTfxbw==

;; Query time: 1880 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Thu Mar 12 03:59:42 UTC 2015
;; MSG SIZE rcvd: 527

$ dig +dnssec u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net

; <<>> DiG 9.9.6-P1 <<>> +dnssec u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25461
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net. IN A

;; ANSWER SECTION:
u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net. 1 IN A 199.102.79.186
u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net. 1 IN RRSIG A 5 4 3600 20200724235900 20130729104013 1968 5a593.z.d

;; AUTHORITY SECTION:
33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207c36.a095a7ae.1dc33700.103ad556.3a564678.16395067.a12ec545.6183d935.c68cebfb.41a4008e
33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207c36.a095a7ae.1dc33700.103ad556.3a564678.16395067.a12ec545.6183d935.c68cebfb.41a4008e
5a593.z.dotnxdomain.net. 3599 IN NS nsz1.z.dotnxdomain.net.
5a593.z.dotnxdomain.net. 3600 IN RRSIG NS 5 4 3600 20200724235900 20130729104013 1968 5a593.z.dotnxdomain.net. ntxWo5UwL1vQjOHY0

;; Query time: 1052 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Thu Mar 12 03:59:57 UTC 2015
;; MSG SIZE rcvd: 937

ECDSA	signed	response	– 527	octets RSA	signed	response	– 937	octets

2017#apricot2017

ECDSA has a history…

2017#apricot2017

ECDSA and OpenSSL

• OpenSSL	added	ECDSA	support	as	from	0.9.8	(2005)	
• Other	bundles	and	specific	builds	added	ECDSA	support	later
• But	deployed	systems	often	lag	behind	the	latest	bundles,	and	
therefore	still	do	not	include	ECC	support	in	their	running	
configuration

2017#apricot2017

Is ECDSA viable?

What	does	NIST	say?
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

2017#apricot2017

Do folk use ECDSA for public keys?
$ dig +dnssec www.cloudflare-dnssec-auth.com

; <<>> DiG 9.9.6-P1 <<>> +dnssec www.cloudflare-dnssec-auth.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7049
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 6, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;www.cloudflare-dnssec-auth.com. IN A

;; ANSWER SECTION:
www.cloudflare-dnssec-auth.com. 300 IN A 104.20.23.140
www.cloudflare-dnssec-auth.com. 300 IN A 104.20.21.140
www.cloudflare-dnssec-auth.com. 300 IN A 104.20.19.140
www.cloudflare-dnssec-auth.com. 300 IN A 104.20.22.140
www.cloudflare-dnssec-auth.com. 300 IN A 104.20.20.140
www.cloudflare-dnssec-auth.com. 300 IN RRSIG A 13 3 300 20150317021923 20150315001923 35273
cloudflare-dnssec-auth.com. pgBvfQkU4Il8ted2hGL9o8NspvKksDT8/jvQ+4o4h4tGmAX0fDBEoorb
tLiW7mcdOWYLoOnjovzYh3Q0Odu0Xw==

;; Query time: 237 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Mon Mar 16 01:19:24 UTC 2015
;; MSG SIZE rcvd: 261

Algorithm 13 is ECDSA P-256

Signed response is 261 octets long!

2017#apricot2017

So lets use ECDSA for DNSSEC

Or	maybe	we	should	look	before	we	leap...

– Is	ECDSA	a	“well	supported”	crypto	protocol?	*
– If	you	signed	using	ECDSA	would	resolvers	
validate	the	signature?

It’s	not	that	crypto	libraries	deliberately	exclude	ECDSA	support	these	days.	
The	more	likely	issue	appears	to	be	the	operational	practic es of	some	ISPs	
who	use	crufty old	software	sets	to	support	DNS	resolvers	which	are	now	
running	old	libraries	that	predate	the	incorporation	of	ECDSA	into	Open	SSL	

*

2017#apricot2017

Where are the users who can validate
ECDSA-signed DNSSEC records?

https://stats.labs.apnic.net/ecdsa

2017#apricot2017

And where ECDSA support is
missing

https://stats.labs.apnic.net/ecdsa

2017#apricot2017

Today we’re in Vietnam…

2017#apricot2017

Today we’re in Vietnam…

2017#apricot2017

The Top 5 Vietnam ISPs

And	the	extent	to	which	their	uses	perform	DNSSEC	validation	with	ECDSA	and	RSA

2017#apricot2017

And it if wasn’t for Google…

There would probably be no DNSSEC at all!

And no ECDSA!

2017#apricot2017

APNIC Labs Report on ECDSA use

https://stats.labs.apnic.net/ecdsa

2017#apricot2017

Me: gih@apnic.net

