
ECDSA P-256 support in
DNSSEC-validating

Resolvers

Geoff Huston
APNIC Labs
March 2016

ECDSA

Elliptic	Curve	Cryptography	allows	for	the	
construction	of	“strong”	public/private	key	pairs	
with	key	lengths	that	are	far	shorter	than	
equivalent	strength	keys	using	RSA	

“256-bit	ECC	public	key	should	provide	comparable	security	to	a	3072-bit	RSA	
public	key”	*

*	http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

ECDSA

And	the	DNS	protocol	has	some	sensitivities	
over	size	when	using	UDP
– UDP	fragmentation	has	its	issues	in	both	V4	and	
V6

*	http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

ECDSA vs RSS

$ dig +dnssec u5221730329.s1425859199.i5075.vcf100.5a593.y.dotnxdomain.net

; <<>> DiG 9.9.6-P1 <<>> +dnssec u5221730329.s1425859199.i5075.vcf100.5a593.y.dotnxdomain.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61126
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;u5221730329.s1425859199.i5075.vcf100.5a593.y.dotnxdomain.net. IN A

;; ANSWER SECTION:
u5221730329.s1425859199.i5075.vcf100.5a593.y.dotnxdomain.net. 1 IN A 144.76.167.10
u5221730329.s1425859199.i5075.vcf100.5a593.y.dotnxdomain.net. 1 IN RRSIG A 13 4 3600 20200724235900 20150301105936 35456 5a593.y.dotnxdomain.net. IMXSIJ/uKixSAt8GXsh6Lm8CvEOmK5n/5bPgsMmqXl7wQTy29P3OiSrB gtNtX5NkxMzt/3ojq3NbUgXa4aAe5A==

;; AUTHORITY SECTION:
ns1.5a593.y.dotnxdomain.net. 1 IN NSEC x.5a593.y.dotnxdomain.net. A RRSIG NSEC
ns1.5a593.y.dotnxdomain.net. 1 IN RRSIG NSEC 13 5 1 20200724235900 20150301105936 35456 5a593.y.dotnxdomain.net. vM+5YEkAc8B9iYHV3ZO3r9v+RvICn3qfWRfneytLP+nHCOku66X31pzB TjHZWCeZzqOKCRHryJe8gqo6G8y/
5a593.y.dotnxdomain.net. 3598IN NS ns1.5a593.y.dotnxdomain.net.
5a593.y.dotnxdomain.net. 3600IN RRSIG NS 13 4 3600 20200724235900 20150301105936 35456 5a593.y.dotnxdomain.net. dzFik3O4HhiEg8TXcn3dCFdCfXCzLj7V0y5qIkCNYXYQ5EfoiWMhUh1s Lb9I0CQkOX9Ki/hPtgXRgn2MyTfxbw==

;; Query time: 1880 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Thu Mar 12 03:59:42 UTC 2015
;; MSG SIZE rcvd: 527

$ dig +dnssec u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net

; <<>> DiG 9.9.6-P1 <<>> +dnssec u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25461
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net. IN A

;; ANSWER SECTION:
u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net. 1 IN A 199.102.79.186
u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net. 1 IN RRSIG A 5 4 3600 20200724235900 20130729104013 1968 5a593.z.d

;; AUTHORITY SECTION:
33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207c36.a095a7ae.1dc33700.103ad556.3a564678.16395067.a12ec545.6183d935.c68cebfb.41a4008e
33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207c36.a095a7ae.1dc33700.103ad556.3a564678.16395067.a12ec545.6183d935.c68cebfb.41a4008e
5a593.z.dotnxdomain.net. 3599IN NS nsz1.z.dotnxdomain.net.
5a593.z.dotnxdomain.net. 3600IN RRSIG NS 5 4 3600 20200724235900 20130729104013 1968 5a593.z.dotnxdomain.net. ntxWo5UwL1vQjOHY0

;; Query time: 1052 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Thu Mar 12 03:59:57 UTC 2015
;; MSG SIZE rcvd: 937

ECDSA	signed	 response	– 527	octets RSA	signed	 response	– 937	octets

So let’s use ECDSA for
DNSSEC

Yes!

Let’s	do	that	right	now!

So lets use ECDSA for
DNSSEC

Or	maybe	we	should	look	before	we	leap...

– Is	ECDSA	a	“well	supported”	crypto	protocol?
– If	you	signed	using	ECDSA	would	resolvers	validate	
the	signature?

The Test Environment

We	use	the	Google	Ad	network	in	to	deliver	a	set	of	
DNS	tests	to	clients	to	determine	whether	(or	not)	they	
use	DNSSEC	validating	resolvers

We	use	5	tests:
1. no	DNSSEC-signature	at	all
2. DNSSEC	signature	using	RSA-based	algorithm
3. DNSSEC	signature	using	broken	RSA-based	algorithm
4. DNSSEC	signature	using	ECDSA	P-256	algorithm
5. DNSSEC	signature	using	broken	ECDSA	P-256	algorithm

The Test Environment
d.t10000.u2045476887.s1412035201.i5053.vne0001.4f167.z.dashnxdomain.net

e.t10000.u2045476887.s1412035201.i5053.vne0001.4f167.z.dotnxdomain.net

f.t10000.u2045476887.s1412035201.i5053.vne0001.4f168.z.dotnxdomain.net

m.t10000.u2045476887.s1412035201.i5053.vne0001.4f167.y.dotnxdomain.net

n.t10000.u2045476887.s1412035201.i5053.vne0001.4f168.y.dotnxdomain.net

Mapped to a wildcard in the zone file Unique Signed
Zone

Unsigned

RSA Signed

RSA signed (Badly)

ECDSA-Signed

ECDSA-Signed (bad!)

A	non-DNSSEC-validating	resolver	query:

A	DNSSEC-Validating resolver	query:

A Naive View

A?

A	+	EDNS0(DNSSEC	OK)?

DS +	EDNS0(DNSSEC	OK)?

DNSKEY	+	EDNS0(DNSSEC	OK)?

A

A	+	RRSIG

DS	+	RRSIG

DNSKEY	+	RRSIG

DNS	
Forwarders

DNS	
Forwarders

Seen:	Single	A	Query

Seen:	A,	DS,	DNSKEY	Queries

Theory: DNSSEC Validating
Queries

e.t10000.u2045476887.s1412035201.i5053.vne0001.4f167.z.dotnxdomain.net

1.	Query for	the	A	resource record	with EDNS0,	DNSSEC-OK
query:	 e.t10000.u204546887.s1412035201.i5053.vne0001.4f167.z.dotnxdomain.net	 IN	A	+ED

2.	Query the	parent	domain for	the	DS	resource record	
query:	4f167.z.dotnxdomain.net	IN	DS	+ED

3.	Query	for	the	DNSKEY	resource	record	
query:	4f167.z.dotnxdomain.net	IN	DNSKEY	+ED

Practice: The DNS is “messy”

• Clients	typically	use	multiple	resolvers,	and	use	local	
timeouts	to	repeat	the	query	across	these	resolvers

• Resolvers	may	use	slave	farms,	so	that	queries	from	a	
common	logical	resolution	process	may	be	presented	to	the	
authoritative	name	server	from	multiple	resolvers,	and	
each	slave	resolver	that	directs	queries	to	servers	may	
present	only	a	partial	set	of	validation	queries

• Resolvers	may	use	forwarding	resolvers,	and	may	explicitly	
request	checking	disabled	to	disable	the	forwarding	
resolver	from	performing	validation	itself

• Clients	and	resolvers	have	their	own	independent	retry	and	
abandon	timers

DNS Mess!

Queries	for	a	single	badly	signed	(RSA)	name:
Resolver Queries

200.55.224.68: A#,K#,D#

74.125.19.147: A#,D#,K#,D#,D#

74.125.19.145: K#,K#

200.55.224.67: A#,A#,A,K#,K#,D#

74.125.19.148: D#

Queries via ISP resolver set

Via Google PDNS Slave Resolvers

#:	EDNS(0)	DNSSEC	OK	flag	set What is going on here?

DNS Mess!

Queries	for	a	single	badly	signed	(RSA)	name:
Resolver Queries

200.55.224.68: A#,K#,D#

74.125.19.147: A#,D#,K#,D#,D#

74.125.19.145: K#,K#

200.55.224.67: A#,A#,A,K#,K#,D#

74.125.19.148: D#

#:	EDNS(0)	DNSSEC	OK	flag	set

Failed validation (SERVFAIL) from the initial query to ISP
resolver causes client to ask Google PDNS resolver

Failed validation appears to cause client to repeat the
query to Google PDNS 2 further times
Failed validation appears to cause client to repeat the
query to ISP’s resolver 2 (or 3?) further times
No clue why this is an orphan DS query!

First Approach to answering
the ECDSA question –
Statistical Inference

• A	DNSSEC-aware	resolver	encountering	a	RR	with	an	attached	
RRSIG	that	uses	a	known	algorithm	will	query	for	DS	and	
DNSKEY	RRs	(in	either	order!)

• A	DNSSEC-aware	resolver	encountering	a	RR	with	an	attached	
RRSIG	that	uses	an	unknown/unsupported	crypto	algorithm	
appears	to		query	only	for	DS	RR	(and	NOT	the	DNSKEY	RR)

Results

Over	45	days	in	December	2015	– January	2016	we	saw:
765,257,019 completed	experiments

208,980,333 experiments	queried	for	the	DNSKEY	RR	of	a	validly	signed	
(RSA)	domain	(27.3%)

183,240,945 experiments	queried	for	the	DNSKEY	RR	of	a	validly	signed	
(ECDSA)	domain	(23.9%)

If	we	assume	that	the	DNSKEY	query	indicates	that	the	resolver	
“recognises”	the	protocol,	then	it	appears	that	there	is	a	fall	by	8.2%	in	
validation	when	using	the	ECC	protocol

1	in	3	RSA	experiments	that	fetched	the	DNSKEY	did	not	fetch	the	ECC	
DNSKEY

Results

Over	45	days	in	December	2015	– January	2016	we	saw:
765,257,019 completed	experiments

208,980,333 experiments	queried	for	the	DNSKEY	RR	of	a	validly	signed	
(RSA)	domain	(27.3%)

183,240,945 experiments	queried	for	the	DNSKEY	RR	of	a	validly	signed	
(ECDSA)	domain	(23.9%)

If	we	assume	that	the	DNSKEY	query	indicates	that	the	resolver	
“recognises”	the	crypto	algorithm,	then	it	appears	that	there	is	a	fall	by	
19.5%	in	validation	when	using	ECDSA

1	in	5	experiments	that	fetched	the	RSA-signed	DNSKEY	did	not	fetch	
the	ECDA-signed	DNSKEY

That’s better than it was…

Over	22	days	in	September	2014	we	saw:
3,773,420	experiments
937,166		experiments	queried	for	the	DNSKEY	RR	of	a	validly	signed	
(RSA)	domain	(24.8%)
629,726		experiments	queried	for	the	DNSKEY	RR	of	a	validly	signed	
(ECC)	domain	(16.6%)

1	in	3		experiments	that	fetched	the	DNSKEY	in	RSA	did	not	fetch	
the	ECDSA-signed	DNSKEY

Protocol Recognition

• When	does	the	resolver	“recognise”	the	
signing	protocol?
– RRSIG	field?
– DS	RR?
– DNSKEY	RR?

Experiments					ECDSA	DS			 ECDSA	DNSKEY			RSA	DS											RSA	DNSKEY
11,988,195	 2,957,855	 2,391,298	 2,963,888 2,970,902	 	

Protocol Recognition

• When	does	the	resolver	“recognise”	the	
signing	protocol?
– RRSIG	field?
– DS	RR?
– DNSKEY	RR?

Experiments					ECDSA	DS			 ECDSA	DNSKEY			RSA	DS											RSA	DNSKEY
11,988,195	 2,957,855	 2,391,298	 2,963,888 2,970,902	 	

This	indicates	that	a	validating	resolver	appears	to	fetch	the	DS	RR	irrespective	of	the	signing	
protocol,	and	only	 fetches	the	DNSKEY	RR	if	it	recognizes	the	zone	signing	protocol.

The Words of the Ancients

The Words of the Ancients

RFC	4035

If	the	resolver	does	not	support	any	of	 the	algorithms	 listed	in	an	
authenticated	DS	RRset,	then	the	resolver	will	not	be	able	to	
verify	the	authentication	path	to	the	child	zone.	In	this	case,	the	
resolver	SHOULD	treat	the	child	zone	as	if	it	were	unsigned.

DNS resolver failure modes
for an unknown signing

algorithm
If	a	DNSSEC-Validating	resolver	receives	a	response	
DS	with	an	unknown	crypto	algorithm	does	it:

q Immediately	stop	resolution	and	return	a	status	code	of	SERVFAIL?

q Fetch	the	DNSKEY	RR	and	then	return	a	status	code	of	SERVFAIL?

qAbandon	validation	and	just	return	the	unvalidated query	result?

DNS resolver failure modes
for an unknown signing

algorithm
If	a	DNSSEC-Validating	resolver	receives	a	response	
DS	with	an	unknown	crypto	algorithm	does	it:

q Immediately	stop	resolution	and	return	a	status	code	of	SERVFAIL?

q Fetch	the	DNSKEY	RR	and	then	return	a	status	code	of	SERVFAIL?

qAbandon	validation	and	just	return	the	unvalidated query	result?

If	the	resolver	doesn’t	 recognize	the	protocol	 in	the	DS	
record	then	there	is	no	point	in	pulling	 the	DNSKEY	
record

Second Approach to answering the
ECDSA question – DNS + WEB

Data collection: 1/1/16 – 16/2/16

64,948,234 clients who appear to be exclusively using RSA DNSSEC-Validating resolvers

ECC Results:
Success: 82% 53,514,518 Saw fetches of the ECC DNSSEC RRs and the well-

signed named URL, but not the badly signed named URL

Failure (fetched both URLs):

Mixed Resolvers 1.9% 1,218,240 Used both ECDSA-Validating and non-validating resolvers
NO ECC 13.0% 8,461,551 Saw A, DS, no DNSKEY, fetched both URLs
Mixed 0.5% 352,914 Saw some DNSSEC queries, fetched both URLs
No Validation 2.2% 1,401,011 Did not fetch any DNSSEC RRs

Apparent Fail: 17.6% 11,433,716

Results

• These	results	show	that	82%	of	clients	who	appeared	
to	exclusively	use	RSA	DNSSEC-Validating	resolvers	
were	also	seen	to	perform	validation	using	ECDSA

• Two	thirds	of	the	the	remaining	clients	fetched	both	
objects	(13%	of	the	total),	but	did	not	fetch	any	
DNSKEY	RRs.

• Of	the	remainder	(5%),	most	were	using	a	validating	
resolver	(which	returned	SERVFAIL	for	the	badly	signed	
object),	and	then	the	client	failed	over	to	a	non-
validating	resolver	*

* This is curious, because these clients did not
failover to a non-validating resolver on a badly
signed RSA structure

Is ECDSA a viable crypto
algorithm for DNSSEC?

If	the	aim	is	to	detect	efforts	to	compromise	the	
DNS	for	the	signed	zone,	then	signing	a	zone	
with	ECDSA	limits	the	number	of	DNS	resolvers	
who	will	validate	the	signature

Which	is	a	shame,	because	the	shorter	key	
lengths	could	be	attractive	for	DNS	over	UDP

ECDSA in the (semi-)wild
$ dig +dnssec www.cloudflare-dnssec-auth.com

; <<>> DiG 9.9.6-P1 <<>> +dnssec www.cloudflare-dnssec-auth.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7049
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 6, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;www.cloudflare-dnssec-auth.com. IN A

;; ANSWER SECTION:
www.cloudflare-dnssec-auth.com. 300 IN A 104.20.23.140
www.cloudflare-dnssec-auth.com. 300 IN A 104.20.21.140
www.cloudflare-dnssec-auth.com. 300 IN A 104.20.19.140
www.cloudflare-dnssec-auth.com. 300 IN A 104.20.22.140
www.cloudflare-dnssec-auth.com. 300 IN A 104.20.20.140
www.cloudflare-dnssec-auth.com. 300 IN RRSIGA 13 3 300 20150317021923 20150315001923 35273
cloudflare-dnssec-auth.com. pgBvfQkU4Il8ted2hGL9o8NspvKksDT8/jvQ+4o4h4tGmAX0fDBEoorb
tLiW7mcdOWYLoOnjovzYh3Q0Odu0Xw==

;; Query time: 237 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Mon Mar 16 01:19:24 UTC 2015
;; MSG SIZE rcvd: 261

