Securing BGP

Geoff Huston November 2007

Agenda

- An Introduction to BGP
- BGP Security Questions
- Current Work
- Research Questions

An Introduction to BGP

Background to Internet Routing

- The routing architecture of the Internet is based on a decoupled approach to:
 - Addresses
 - Forwarding
 - □ Routing
 - Routing Protocols
- The routing system is the result of the interaction of a collection of many components, hopefully operating in a mutually consistent fashion!

IP Addressing

IP Addresses are not locationally significant

- An address does not say "where" a device may be within the network
- An address does not determine how a packet is passed across the network
- It's the role of the *routing system* to announce the "location" of the address to the network
- It's the role of the *forwarding system* to direct packets to this location

IP Forwarding

Forwarding is a local autonomous action

- Every IP routing element is equipped with a forwarding table
- End-to-end packet forwarding relies on mutually consistent populated forwarding tables held in every routing element
- The role of the routing system is to maintain these forwarding tables

IP Routing

- The routing system is a collection of switching devices that participate in a self-learning information exchange (through the operation of a routing protocol)
- All self-learning routing systems have a similar approach:

You tell me what you know and I'll tell you what I know!

- The objective is to support a distributed computation that produces consistent "best path" outcomes in the forwarding tables at every switching point, at all times
 - Routing involves significant levels of mutual trust

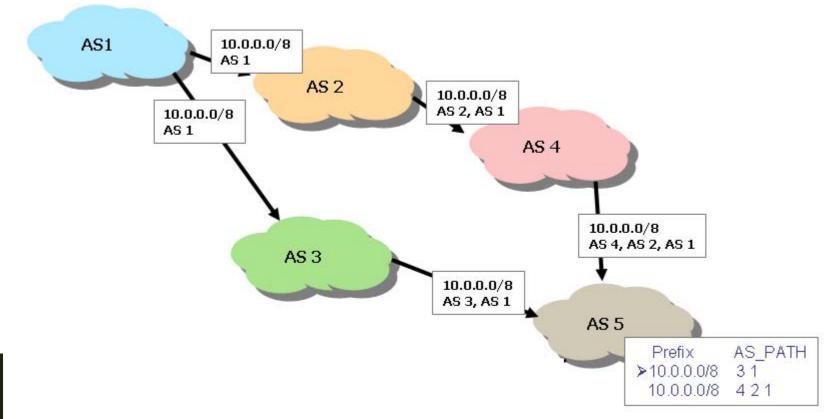
Routing Structure

- The Internet's routing architecture uses a 2-level hierarchy, based on the concept of a routing domain ("Autonomous System")
- A "domain" is an interconnected network with a single exposed topology, a coherent routing policy and a consistent metric framework
- Interior Gateway Protocols are used within a domain
 OSPF, IS-IS

 Exterior Gateway Protocols are used to interconnect domains, or "Autonomous Systems" (ASes)
 BGP

BGPv4

- BGP is a Path Vector Distance Vector exterior routing protocol
- Each routing object is an address and an attribute collection
 - Attributes: AS Path vector, Origination, Next Hop, Multi-Exit-Discriminator, Local Pref, …
- The AS Path attribute is a vector of AS identifiers that form a viable path of AS transits from this AS to the originating AS
 - □ The AS Path Vector is used to perform rapid loop detection and a path metric to support route comparison for best path selection



BGP is an inter-AS protocol

- Not hop-by-hop
- Addresses are bound to an "origin AS"
- BGP is an "edge to edge" protocol
 - □ BGP speakers are positioned at the inter-AS boundaries of the AS
 - The "internal" transit path is directed to the BGP-selected edge drop-off point
 - □ The precise path used to transit an AS is up to the IGP, not BGP
- BGP maintains a local forwarding state that associates an address with a next hop based on the "best" AS path
 - □ Destination Address -> [*BGP Loc-RIB*] -> Next Hop address
 - □ Next_Hop address -> [*IP Forwarding Table*] -> Output Interface

BGP Example

BGP Transport

TCP is the BGP transport

- Reliable transmission of BGP Messages
 - Messages are never repeated!
- Capability to perform throttling of the transmission data rate through TCP window setting control
- May operate across point-to-point physical connections or across entire IP networks

BGP is an incremental protocol

- Maintains a collection of local "best paths" for all advertised prefixes
- Passes incremental changes to all neighbours rather than periodic full dumps
- A BGP update message reflects changes in the local database:
 - A new reachability path to a prefix that has been installed locally as the local best path (update)
 - All local reachability information has been lost for this prefix (withdrawal)

Messaging protocol

- The TCP stream is divided into messages using BGP-defined "markers"
- Each message is a standalone protocol element
- Each message has a maximum size of 4096 octets

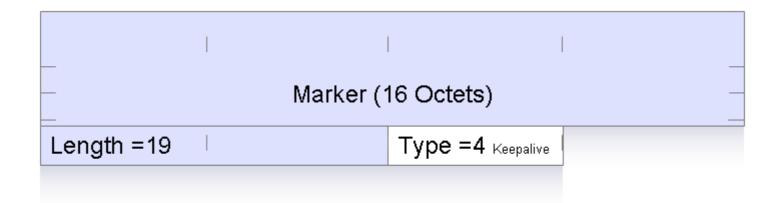
BGP Messages

2007/07/15 01:46 ATTRS: nexthop 202.12.29.79, origin i, path 4608 1221 4637 3491 3561 2914 3130 PFX: 198.180.153.0/24

2007/07/15 01:46 WDL: 64.31.0.0/19, 64.79.64.0/19 64.79.86.0/24

2007/07/15 01:46 ATTRS: nexthop 202.12.29.79, origin i, path 4608 1221 4637 16150 3549 1239 12779 12654 PFX: 84.205.74.0/24

SWINBURNE UNIVERSITY OF TECHNOLOGY 2007/07/15 01:47 ATTRS: nexthop 202.12.29.79, origin i, path 4608 1221 4637 4635 34763 16034 12654 PFX: 84.205.65.0/24


BGP OPEN Message

Marker	(16 Octets)	
Length (2 Octets)	Type =1 (Open)	Version (1 Octet)
My AS (2 Octets)	Hold Time (2 Oc	tets)
BGP Identifier (4 Octets)		
Opt Length (1 Octet) Optional Pa	rameters ····	

- Session setup requires mutual exchange of OPEN messages
- My AS field is the local AS number
- Hold time is inactivity timer
- BGP identifier code is a local identification value (loopback IPv4 address)
- Options allow extended capability negotiation
 - E.g. Route Refresh, 4-Byte AS, Multi-Protocol

BGP KEEPALIVE Message

- "null" message
- Sent at 1/3 hold timer interval
- Prevent the remote end triggering an inactivity session reset

BGP UPDATE Message

 Marker (16 Octets)	
_		
Length (2 Octets)	Type =2 (Update)	
Withdrawn Prefixes Length 2008		
Withdrawn Prefixes List		
Path Attributes Length (2 Octes)		
Path Attributes List		
Updated Prefixes List		
Prefix List Entry		
Length (1 Octet)		
Prefix		
Attribute List Entry		
Flags (1 Octet)		
Type (1 Octet)		
Length (1 or 2 Octets)		

. . .

Value

SW

SWINBURNE

UNIVERSITY OF TECHNOLOGY

BGP UPDATE Message

- List of withdrawn prefixes
- List of updated prefixes
 - Set of "Path Attributes" common to the updated prefix list
- Used for announcements, updates and withdrawals
- Can piggyback withdrawals onto announcements

□ But this happens rarely in practice today

AS Path Attribute

- AS_PATH : the vector of AS transits forming a path to the origin AS
 - In theory the BGP Update message has transited the reverse of this AS path
 - In practice it doesn't matter
 - The AS Path is merely a loop detector and a path metric

BGP Security Questions

BGP Security

How do we talk?

Securing the TCP session

- Whom am I talking to?
 - Securing the BGP session
- What are you saying?
 - Verifying the authenticity and completeness of the routing information
- Should I believe you?

□ Verifying the integrity of the forwarding system

How do we talk?

Long held TCP session Threats: eavesdropping session reset session capture message alteration host processing exposure host memory exposure

Whom am I talking to?

Authenticate the BGP peer

- MD5 and password exchange
 - Symmetric crypto is faster than asymmetric public / private key crypto
 - But key rollover is a problem
- - More agile key management
 - Stronger session protection
 - Higher overhead
- Are you who you say you are?
 - AS number PKI to validate AS right-of-use assertions

What are you saying?

- Announcing a route object
 Requires update credentials
 Altering a route object
 Requires update credentials
- Withdrawing a route object
 - Does not require update credentials
 - If I believe your announcement then I'll believe your withdrawal

Should I believe you?

Update Credentials

- Origination part
 AS a announces Prefix p
- Accumulation part
 Update has AS path vector (x, y, z, a)
 Hop-by-hop part
 - Update has community value a::b

Origination Validation

- Is this a "valid" prefix?
- Has the prefix's owner given this AS the authority to originate an announcement for this prefix into the routing system?
- Can I validate the prefix and the authority using my trust anchors?

AS Path Validation

- Did each AS in the AS Path vector add itself into the path vector?
 - Did the update propagate along precisely the same AS transit sequence as the AS Path vector?
- Is this a feasible forwarding path?
 - Could this packets I send actually be forwarded in the reverse direction along this AS path vector?
- Is this the actual forwarding path?
 - Can I validate that this AS Path vector represents the actual forwarding path?

Current Work

Current Proposals

- Secure BGP
- Secure origin BGP
- Pretty Secure BGP
- Internet Route Validation
- DNSV

sBGP

- PKI for addresses and ASes using the address distribution hierarchy
- Digitally signed attestations:
 - ROA to allow a prefix holder to authorize an AS to undertake route origination
 - Router Attestation to attest that a router is authorized to act for a particular AS
- Distribute PKI, ROAs and Router Attestations
- Augment BGP Updates with
 - origination signature
 - □ AS Path signature
 - Nested digital sequence, incrementally signed across (previous sign, prefix, this AS, next AS)

sBGP Observations

- Generally regarded as the most complete specification of securing routing system
- Has the following drawbacks
 - Requires a PKI for addresses and ASes
 - Requires a novel mechanism to distribute attestations and validation material to every sBGP speaker
 - Requires certification for every router
 - High memory load
 - □ High processing load due to use of asymmetric crypto
 - □ High time penalty
 - □ Unclear as to the implications of off-loading sBGP processing
 - □ Incremental deployment is not supported in a robust manner

soBGP

Assumes no PKI

Relies on assertions by ASes

- Address origination
- □ AS Peering
- Distribution of assertions to all parties
- Augment BGP with
 - origination signature
 - Validate AS Path using AS Peering assertion graph for feasibility

soBGP Observations

- Hard to discern what is actually secured in soBGP
- Address assertions imply vulnerabilities from cooperating ASes
- AS peering assertions imply vulnerabilities from cooperating ASes
- No external independent validation mechanism for assertions implies weak security for address validity and AS peering adjancies
- AS peering attestations imply poor protection for the integrity of the AS path

psBGP

Assumes a PKI for ASes, but no PKI for addresses (?)

Uses AS assertions for

- Address origination
- AS Peering
- Peer AS's address origination
- Augment BGP with
 - Origination signature
 - Validate signature using reputation calculation
 - □ Validate AS Path using AS Peering assertion graph for feasibility

psBGP Observations

- Assumes PKI for ASes but no PKI for addresses – why?
- Relies on calculation of relative trust in neighbours' attestations
- Attempt to post-fix web of trust models with explicit calculation of trust level

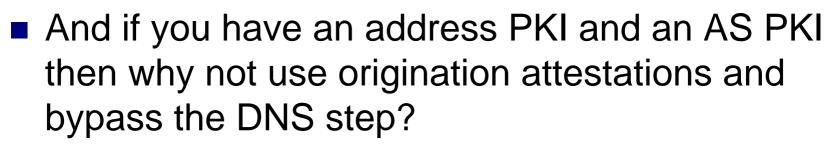
IRV

No modifications to BGP

- Uses OCSP-like approach to perform a 'back' query to validate a BGP update
 - Query the origination AS's IRV server for origination
 - Query the transit ASs' IRV servers for AS Path

IRV Observations

- Origination information can be distributed in a signed form
 - □ No need to perform post-fact queries
- Chained queries to validate the path is heavier overhead than a compound signed path
- Implies delayed validation pass
 - □ Is short term vulnerability acceptable?


Solution looking for a problem?

DNSV

Early proposal

- Place the authority provided by a prefix holder to permit an AS to originate an advertisement into the DNS
- Needs an address PKI and DNSSEC in order to inject reliability into the address part of the DNS

Refinements

- Numerous papers, generally concentrating on the AS path validation problem of sBGP
- Common starting assumption its all too cumbersome!
- Improve speed of validation
 - Use update aggregation to replace asymmetric cryptography with symmetric cryptography by using one way hash chains and hash trees
 - Elliptical cryptography to aggregate across an AS Path signature sequence
- Reduce validation processing load
 - Delay validation of update until the update has reached a stable state (convergence)
 - □ Cache validation outcomes for reuse
 - □ Modify BGP to reduce update load profile
- Delayed validation
 - Avoid potential circular dependencies of requiring to accept the route in order to validate the credentials associated with the route
- Reduce information space
 - Use additional layers of indirection in routing to reduce the population of the routed object set

- What is essential and what is desireable in securing BGP?
 - □ BGP vs secure BGP performance profile
 - BGP performance profile is measured in terms of: Time to converge, size of RIBs, router processor load, router memory load, router autonomy, routing system robustness, routing system scaling capability
 - What are the acceptable trade-offs in terms of current understandings of acceptable BGP performance characteristics?
 - □ Is there a commonly accepted answer?

Is securing the routing system alone actually helpful and valuable?

- Can you validate forwarding paths being proposed by a routing system?
 - Is secure routing helpful in and of itself?
 - Or this this just pushing the vulnerability set to a different point in the network integrity space?
- If not, then is this a case of too high a cost or too low a benefit?
 - Is this a case of reducing the security credential generation and validation workload by reducing the security outcomes through reduced trust and/or reduced amount of validated information
 - Or is this a case of increasing the level of assurance and the amount of routing information secured by these mechanisms

- Are the semantics of routing security and incomplete credentials compatible concepts?
 - Can you deploy high integrity security using partial deployment scenarios?
 - Is BGP too incomplete in terms of its information distribution properties to allow robust validation of the intended forwarding state?
 - Does securing forwarding imply carrying additional information relating to the routing and forwarding state coupling in additon to routing

Questions?

