Inter-Domain Routing: an IETF perspective

> IETF 69 Geoff Huston

> > APNIC July 2007

Agenda

- Scope
- Background to Internet Routing
- BGP
- Current IETF Activities
- Views, Opinions and Comments

Agenda

Scope

- Background to Internet Routing
- BGP
- Current IETF Activities
- Views, Opinions and Comments

Today, lets talk about ...

- How self-learning routing systems work
- The Internet's routing architecture
- The design of BGP as our current IDR of choice
- BGP features
- Recent and Current IETF IDR activities
- Possible futures, research topics and similar

We won't be talking about ...

- How to write a BGP implementation
- How to configure your favourite vendor's BGP
- How to set up routing, peering, transit, multihoming, traffic engineering, or all flavours of routing policies
- Operating your network
- Debugging your favourite routing problem!

Agenda

Scope

- Background to Internet Routing
- BGP
- Current IETF Activities
- Views, Opinions and Comments

Background to Internet Routing

- The routing architecture of the Internet is based on a decoupled approach to:
 - Addresses
 - Forwarding
 - Routing
 - Routing Protocols
- There is no single routing protocol, no single routing configuration, no single routing state and no single routing management regime for the entire Internet
- The routing system is the result of the interaction of a collection of many components, hopefully operating in a mutually consistent fashion!

IP Addresses

IP Addresses are not locationally significant

- An address does not say "where" a device may be within the network
- An address does not determine how a packet is passed across the network
- Any address could be located at any point within the network
- It's the role of the *routing system* to announce the "location" of the address to the network
- It's the role of the *forwarding system* to direct packets to this location

Forwarding

- Every IP routing element is equipped with one (or more!) forwarding tables.
- The forwarding table contains mappings between address prefixes and an outgoing interface
- Switching a packet involves a lookup into the forwarding table using the packet's destination address, and queuing the packet against the associated output interface
- End-to-end packet forwarding relies on mutually consistent populated forwarding tables held in every routing element
- The role of the *routing system* is to maintain these forwarding tables

Routing

- The routing system is a collection of switching devices that participate in a self-learning information exchange (through the operation of a routing protocol)
- There have been many routing protocols, there are many routing protocols in use today, and probably many more to come!
- Routing protocols differ in terms of applicability, scale, dynamic behaviour, complexity, style, flavour and colour

Routing Approaches

All self-learning routing systems have a similar approach:

You tell me what you know and I'll tell you what I know!

- All routing systems want to avoid:
 - Loops
 - Dead ends
 - Selection of sub-optimal paths
- The objective is to support a distributed computation that produces consistent "best path" outcomes in the forwarding tables at every switching point, at all times

Distance Vector Routing

- I'll tell you my "best" route for all known destinations
- You tell me yours
- If any of yours are better than mine I'll use you for those destinations
- And I'll let all my other neighbours know

Link State Routing

- I'll tell everyone about all my connections (links), with link up/link down announcements
- I'll tell everyone about all the addresses I originate on each link
- I'll listen to everyone else's link announcements
- I'll build a topology of every link (map)
- Then I'll compute the shortest path to every address
- And trust that everyone else has assembled the same map and performed the same relative path selection

Relative properties

- Distance Vector routing
 - Is simple!
 - Can be very verbose (and slow) as the routing system attempts to converge to a stable state
 - Finds it hard to detect the formation of routing loops
 - Ensures consistent forwarding states are maintained (even loops are consistent!)
 - Can't scale

Relative properties

- Link State Routing
 - Is more complex
 - Converges extremely quickly
 - Should be loop-free at all times
 - Does not guarantee consistency of outcomes
 - Relies on a "full disclosure" model and policy consistency across the routing domain
 - Still can't scale, but has better scaling properties than DV in many cases

Routing Structure

- The Internet's routing architecture uses a 2-level hierarchy, based on the concept of a *routing domain* ("Autonomous System")
- A "domain" is an interconnected network with a single exposed topology, a coherent routing policy and a consistent metric framework
- Interior Gateway Protocols are used within a domain
- Exterior Gateway Protocols are used to interconnect domains

IGPs and EGPs

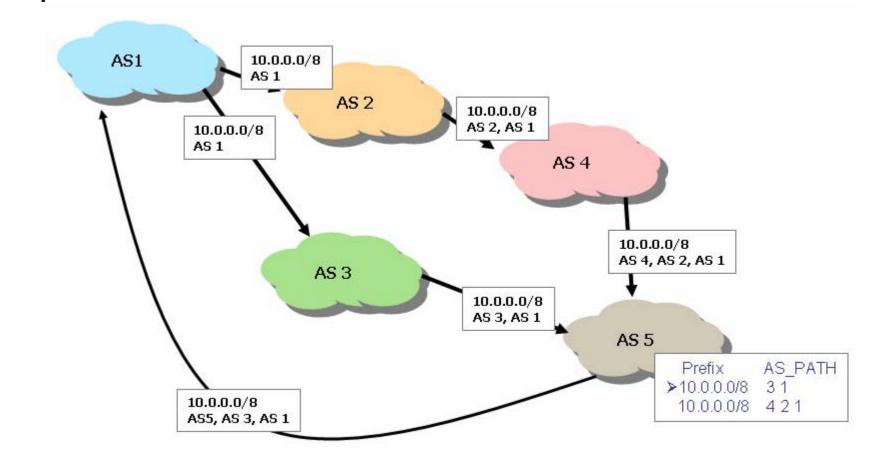
- IGPs
 - Distance Vector: RIPv1, RIPv2, IGRP, EIGRP
 - Link State: OSPF, IS-IS
- EGPs
 - Distance Vector: EGP, BGPv3 BGPv4

Agenda

- Scope
- Background to Internet Routing
- BGP
- Current IETF Activities
- Views, Opinions and Comments

Border Gateway Protocol - BGP

- Developed as a successor to EGP
 - Version 1
 - RFC1105, Experimental, June 1989
 - Version 2
 - RFC1163, RFC 1164, Proposed Standard, June 1990
 - Version 3
 - RFC1267, Proposed Standard, October 1991
 - Version 4
 - RFC1654, Proposed Standard, July 1994
 - RFC1771, Draft Standard, March 1995
 - RFC4271, Draft Standard, January 2006


BGPv4

- BGP is a Path Vector Distance Vector exterior routing protocol
- Each routing object is an address and an attribute collection
 - Attributes: AS Path vector, Origination, Next Hop, Multi-Exit-Discriminator, Local Pref, ...
- The AS Path vector is a vector of AS identifiers that form a viable path of AS transits from this AS to the originating AS
 - Although the Path Vector is only used to perform loop detection and route comparison for best path selection

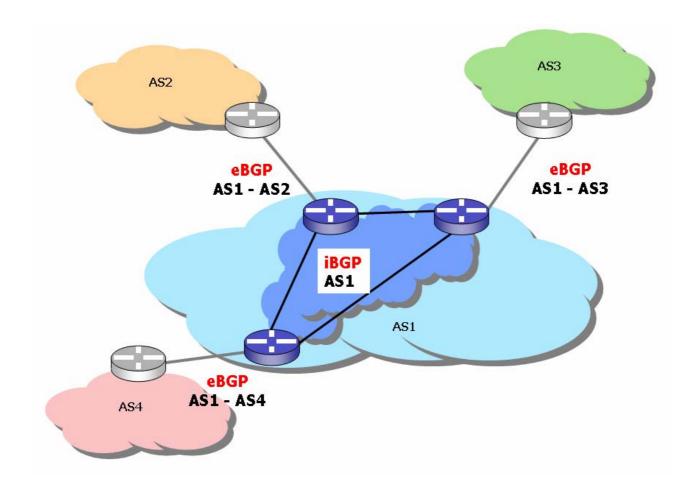
BGP is an inter-AS protocol

- Not hop-by-hop
- Addresses are bound to an "origin AS"
- BGP is an "edge to edge" protocol
 - BGP speakers are positioned at the inter-AS boundaries of the AS
 - The "internal" transit path is directed to the BGP-selected edge drop-off point
 - The precise path used to transit an AS is up to the IGP, not BGP
- BGP maintains a local forwarding state that associates an address with a next hop based on the "best" AS path
 - Destination Address -> [BGP Loc-RIB] -> Next Hop address
 - Next_Hop address -> [*IP Forwarding Table*] -> Output Interface

BGP Example

BGP Example

Network Next Hop *> 0.0.0.0 193.0.4.28 * 3.0.0.0 193.0.4.28 *> 202.12.29.79 *> 4.0.0.0 193.0.4.28 * 202.12.29.79 *> 4.0.0.0/9 193.0.4.28 202.12.29.79 *> 4.23.112.0/24 193.0.4.28 202.12.29.79 *> 4.23.113.0/24 193.0.4.28 * 202.12.29.79 *> 4.23.114.0/24 193.0.4.28 202.12.29.79 * *> 4.36.116.0/23 193.0.4.28 202.12.29.79 *> 4.36.116.0/24 193.0.4.28 * 202,12,29,79 *> 4.36.117.0/24 193.0.4.28 * 202.12.29.79 *> 4.36.118.0/24 193.0.4.28 202.12.29.79 Metric LocPrf Weight Path


BGP is a Distance Vector Protocol

- Maintains a collection of local "best paths" for all advertised prefixes
- Passes incremental changes to all neighbours rather than periodic full dumps
- A BGP update message reflects changes in the local database:
 - A new reachability path to a prefix that has been installed locally as the local best path (update)
 - All local reachability information has been lost for this prefix (withdrawal)

iBGP and eBGP

- eBGP is used across AS boundaries
- iBGP is used within an AS to synchronise the decisions of all eBGP speakers
 - iBGP is auto configured (vie a match of MyAS in the OPEN message)
 - iBGP peering is manually configured
 - Needs to emulate the actions of a full mesh
 - Typically configured as a flooding hierarchy using Route Reflectors
 - iBGP does not loop detect
 - iBGP does not AS prepend

iBGP and eBGP

BGP Transport

- TCP is the BGP transport
 - Port 179
 - Reliable transmission of BGP Messages
 - Messages are never repeated!
 - Capability to perform throttling of the transmission data rate through TCP window setting control
- May operate across point-to-point physical connections or across entire IP networks

Messaging protocol

- BGP is not a data stream protocol
- The TCP stream is divided into messages using BGP-defined "markers"
- Each message is a standalone protocol element
- Each message has a maximum size of 4096 octets

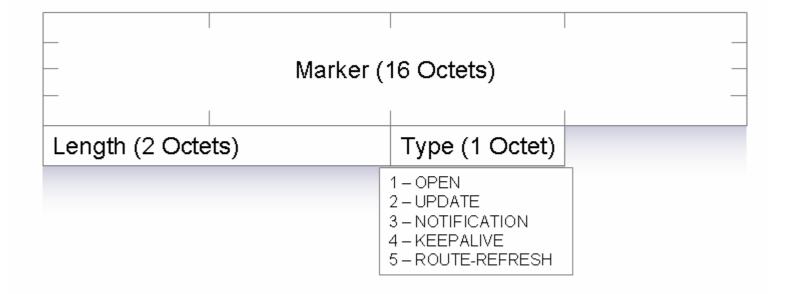
BGP Messages

UPDATE: 2007/07/15 01:46 ATTRS: nexthop 202.12.29.79, origin i, aggregated by 64642 10.19.29.192, path 4608 1221 4637 3491 3561 2914 3130 U PFX: 198.180.153.0/24

UPDATE: 2007/07/15 01:46

W_PFX: 64.31.0.0/19, 64.79.64.0/19 64.79.86.0/24

UPDATE: 2007/07/15 01:46


ATTRS: nexthop 202.12.29.79, origin i, aggregated by 65174 10.17.204.65, path 4608 1221 4637 16150 3549 1239 12779 12654 U PFX: 84.205.74.0/24

UPDATE: 2007/07/15 01:47 ATTRS: nexthop 202.12.29.79, origin i,

> aggregated by 64592 10.17.204.65, path 4608 1221 4637 4635 34763 16034 12654

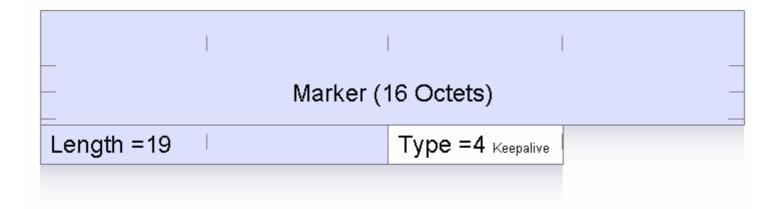
U_PFX: 84.205.65.0/24

BGP Message Format – Marker

Mark

Mark is a record delimiter

- Value all 1's (or a security encode field)
- Length is message size in octets
 - Value from 9 to 4096
- Type is the BGP message type


BGP OPEN Message

	Marker (*	16 Octets)	 		
Length (2 Octets)		Type =1 (Open)	Version (1 Octet)		
My AS (2 Octets)		Hold Time (2 Oc	tets)		
BGP Identifier (4 Octets)					
Opt Length (1 Octet)	Optional Para	imeters ····			

Open

- Session setup requires mutual exchange of OPEN messages
- Version is 4
- MyAS field is the local AS number
- Hold time is inactivity timer
- BGP identifier code is a local identification value (loopback IPv4 address)
- Options allow extended capability negotiation
 - E.g. Route Refresh, 4-Byte AS, Multi-Protocol

BGP KEEPALIVE Message

Keepalive

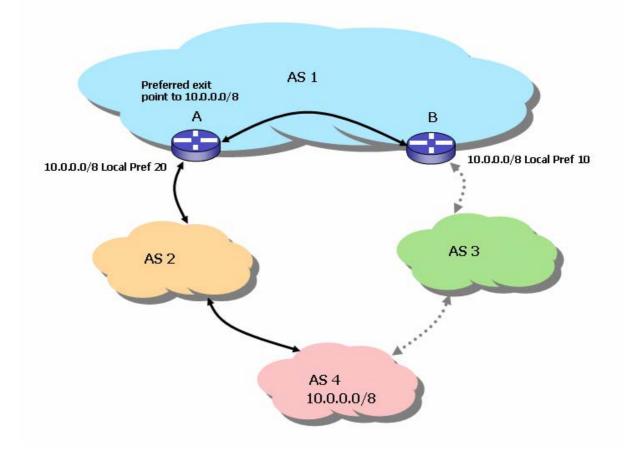
- "null" message
- Sent at 1/3 hold timer interval
- Prevent the remote end triggering an inactivity session reset

BGP UPDATE Message

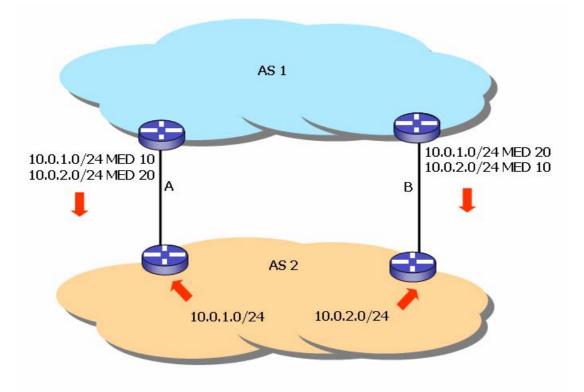
Marker (16 Octets)	
Length (2 Octets)	Type =2 (Update)	
Withdrawn Prefixes Length		
Withdrawn Prefixes List	1	
Path Attributes Length (2 Octats)		
Path Attributes List	1	
Updated Prefixes List		
Prefix List Entry Length (1 Octet)		
Prefix		
Attribute List Entry		
Flags (1 Octet)		
Type (1 Octet)		
Length (1 or 2 Octets)		
Value	·	

UPDATE

- Used for announcements, updates and withdrawals
- Can piggyback withdrawals onto announcements
- List of withdrawn prefixes
- List of updated prefixes
- Set of "Path Attributes" common to the updated prefix list


Update Path Attributes

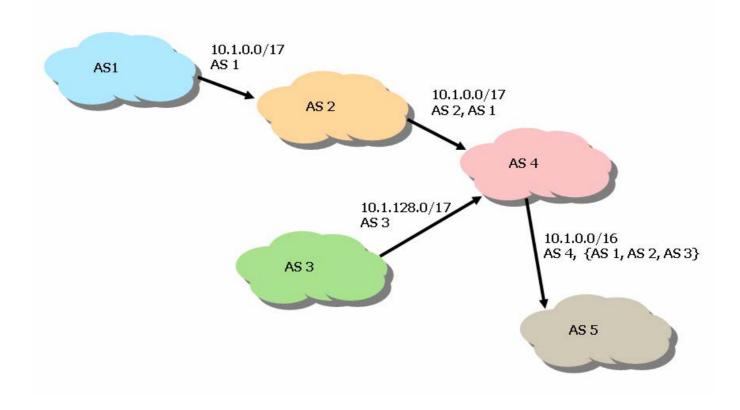
- Additional information that is associated with an address
- Attributes can be:
 - Optional or Well-Known
 - Transitive or Point-to-point
 - Partial or Complete
 - Extended Length or not


Update Path Attributes

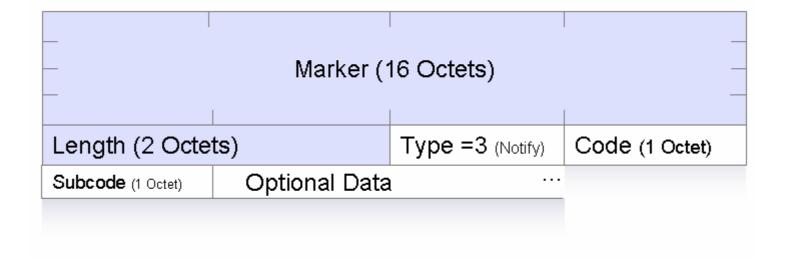
- **Origin** : how this route was injected into BGP in the first place
- Next_Hop : exit border router
- Multi-Exit-Discriminator : relative preference between 2 or more sessions between the same AS pair
- Local Pref : local preference setting
- Atomic Aggregate : Local selection of aggregate in preference to more specific
- **Aggregator** : identification of proxy aggregator
- Community : locally defined information fields
- Destination Pref : preference setting for remote AS

Local Pref Example

AS Path


AS_PATH : the vector of AS transits forming a path to the origin AS

- In theory the BGP Update message has transited the reverse of this AS path
- In practice it doesn't matter
 - The AS Path is a loop detector and a path metric


AS Path

- AS Path is a vector of AS values, optionally followed by an AS Set
- AS Set : If a BGP speaker aggregates a set of BGP route objects into a single object, the set of AS's in the component updates are placed into an unordered AS_Set as the final AS Path element

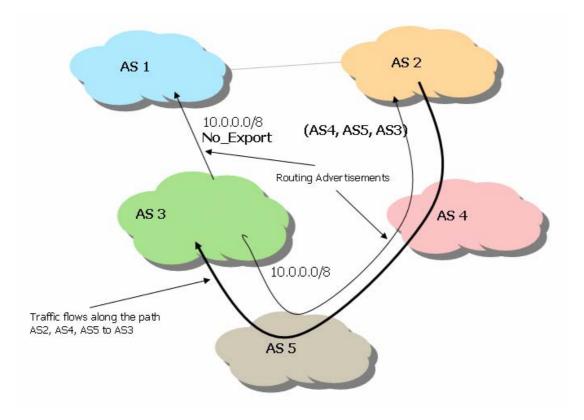
AS Path Example

BGP NOTIFICATION Message

BGP ROUTE REFRESH Message

Route Selection Algorithm

- For a set of received advertisements of the same address prefix then the local "best" selection is based on:
 - Highest value for Local-Pref
 - Local setting
 - Shortest AS Path length
 - External preference
 - Lowest Multi_Exit_Discriminator value
 - Egress tie break for multi-connected ASes
 - Minimum IGP cost to Next_Hop address
 - iBGP tie break
 - eBGP learned routes preferred to iBGP-learned routes
 - Lowest BGP Identifier value
 - Last point tie break


Communities

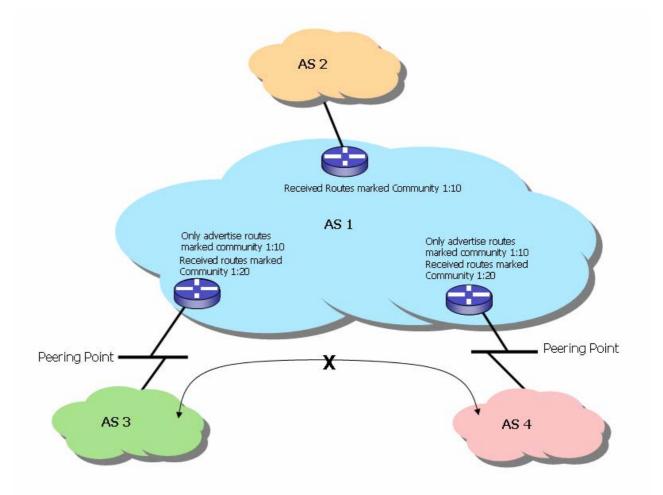
- Communities are an optional transitive path attribute of an Update message, with variable length
 - Well-Known Communities
 - AS-Defined communities
- A way of attaching additional information to a routing update

Well-Known Communities

- Registered in an IANA Registry
- Created by IETF Standards Action
 - NO_EXPORT
 - Do not export this route outside of this AS, or outside of this BGP Confederation
 - NO_ADVERTISE
 - Do not export this route to any BGP peer (iBGP or eBGP)
 - NO_EXPORT_SUBCONFED
 - Do not export this route to any eBGP peer
 - NOPEER
 - No do export this route to eBGP peers that are bilateral peerss

Community Example: NO_EXPORT

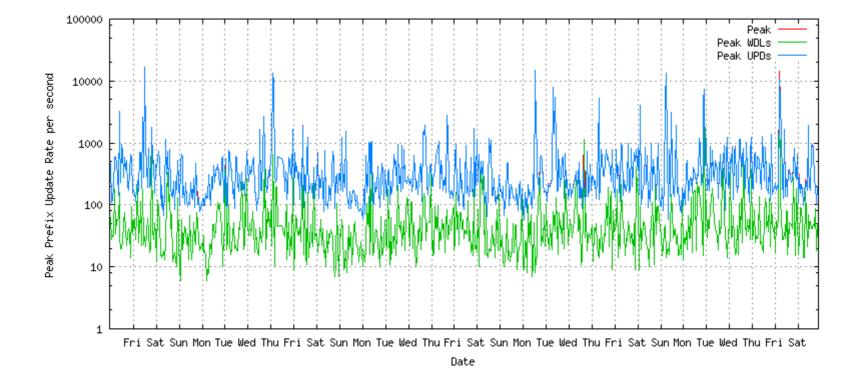
AS-Defined Communities


Optional Transitive Attribute

- AS value
- AS-specific value
- Used to signal to a specific AS information relating to the prefix and its handling
 - Local pref treatment
 - Prepending treatment
- Use to signal to other ASs information about the local handling of the prefix within this AS

Extended Communities

- Negotiated capability
- Adds a Type field to the community
- 8 octet field
 - 2 octets for type
 - 1 bit for IANA registry
 - 1 bit for transitive
 - 6 octets for value
 - 2 octets for AS
 - 4 octets for value
 - or
 - 4 octets for AS
 - 2 octets for value


Community Example: Policy Signalling in iBGP

BGP Update Loads

- BGP does not implicitly suppress information
 - Anything passed into BGP is passed to all BGP speakers
 - Local announcements and withdrawals into eBGP are propagated to all BGP speakers in the entire network
- BGP can be a "chatty" protocol
 - Particularly in response to a withdrawal at origin
- The instanteous peak "update loads" in BGP can be a significant factor in terms of processor capability for BGP speakers and overall convergence times

Peak Update loads – IPv4 Network

Hourly peak per second BGP update loads – measured at AS2.0 in July 2007

Load Shedding - RFD

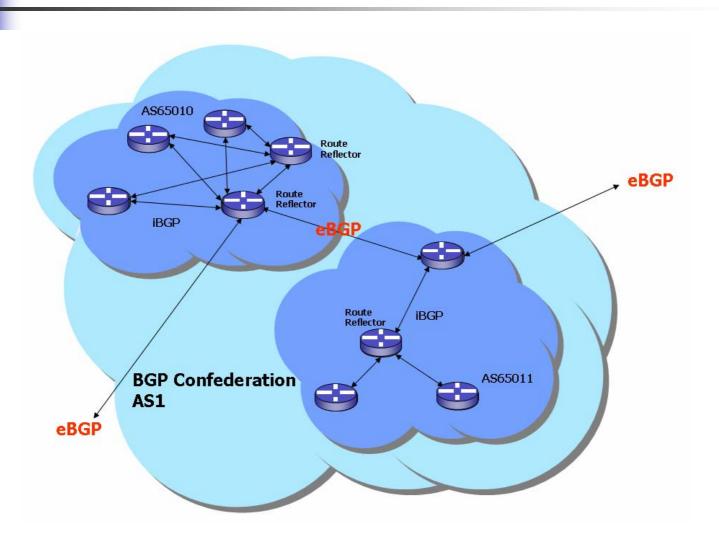
Route Flap Damping

- "Two flaps are you are out!"
- For each prefix / eBGP peer pair have a "penalty" score
- Each Update and Withdrawal adds to the penalty
- The penalty score decays over time
- If the penalty exceeds the suppression threshold then the route is damped
- The route is damped until the panelty score decays to the re-advertisement threshold
- Fallen into disfavour these days
 - Single withdrawal at origin can trigger multi-hour outages

Load Shedding – MRAI and WMRAI

- Applied to the ADJ-RIB-OUT queue
- Wait for the MRAI timer interval (30 seconds) before advertising successive updates for the same prefix to the same peer
- Coarser: only advertise updates to a peer at 30 second intervals
- Coarser: Only advertise updates at 30 second intervals
- WMRAI : Include Withdrawal in the same timer
- A very coarse granularity filter
- Some implementations have MRAI enabled by default, others do not
- The mixed deployment has been simulated to be worse than noone or everyone using MRAI!

Load Shedding – SSLD


- Relative simple hack to BGP
- Use the sender side to perform loop detection looking for the eBGP peer's AS in the AS Path, suppress sending the update is found

BGP and IPv6

- IPv6 support in BGP is part of a generalized multiprotocol support in BGP
- Capability negotiated at session start
- New non-transitive optional attributes MP_REACH_NLRI
 - Carries reachable destinations and associated next hop information, plus AFI/Sub-AFI
 - V6 -> AFI = 2, SAFI = 1 (unicast)
 - MP_UNREACH_NRLI
 - Unreachable destinations, AFI/Sub-AFI
- Like tunnelling, the MP-BGP approach places IPv6 BGP update information inside the MP attributes of the outer BGP update message

Operational Practices

Route Reflectors and Confederations

Influencing Route Selection

- Local selection (outbound path selection) can be adjusted through setting the Local_Pref values applied to incoming routing objects
- But what about inbound path selection?
 - How can a AS "bias" the route selection of other ASs?
 - BGP Communities
 - Advertise more specific prefixes along the preferred path
 - Use own-AS prepending to advertise longer AS paths on less preferred paths
 - Use poison-AS set prepending to selectively eliminate path visibility

BGP Session Security

- The third party TCP reset problem
 - TTL Hack
 - TCP hack
 - MD5 Signature Option
 - IPSEC for BGP

Agenda

- Scope
- Background to Internet Routing
- BGP
- Current IETF Activities
- Views, Opinions and Comments

Current (and Recent) IETF Activities

- Working Groups that directly relate to BGP work in the IETF:
 - Inter-Domain Routing (IDR)
 - Routing Protocol Security Requirements (RPSEC)
 - Secure Inter-Domain Routing (SIDR)
 - Global Routing Operations (GROW)

4-Byte AS Numbers

RFC4893

- Extends the Autonomous System identifier from 16 bits to 32 bits
 - Due to run-out concerns of the 16 bit number space first identified in 1999
- An excellent example of a clearly through out backward-compatible transition arrangement
- IDR activity undertaken from 2000 2007

Current IDR topics

Outbound Route Filter

- Extension BGP signalling that requests the peer to apply a specified filter set to the updates prior to passing them to this BGP speaker
- AS Path Limit
 - A new BGP Path Attribute that functions as a form of TTL for BGP Route Updates

RPSEC Topics

BGP Security Requirements

- What are the security requirements for BGP?
- This work is largely complete the major outstanding topic at present is the extent to which the AS Path attribute of BGP updates could or should be secured

SIDR

- Currently Working on basic tools for passing security credentials
 - Digital signatures with associated X.509 certification and a PKI for signature validation
- Then will work on approaches to fitting this into BGP in a modular fashion
 - Based on the RPSEC requirements this is a study of what and how various components of the BGP information could be digitally signed and validated

GROW

Operational perspectives on BGP deployment

- Recent activity:
 - MED Considerations
 - CIDR revisited
 - BGP Wedgies
- Currently re-chartering and setting a new work agenda

Agenda

- Scope
- Background to Internet Routing
- BGP
- Current IETF Activities
- Views, Opinions and Comments

IPv6 and Routing

- How big does the routing world get?
- How important are routing behaviours to mobility, ad hoc networking, sensor nets, ... ?
- While IP addresses continue to use overloaded semantics of forwarding and identity then there is continual pressure for persistent identity properties of addresses
 - Which places pressure on the routing system
- This is a long-standing topic, with a history of interplay between the IPv6 address architecture and the routing system design

Research Perspectives

- How well does BGP scale?
 - Various views ranging from perspectives of short term scaling issues through to no need for immediate concern
 - Recent interest in examining BGP to improve some aspects of its dynamic behaviour
 - Also activity looking at alternative approaches to routing, generally based on forms of tunneling and landmark routing

Looking Forward

- A number of studies over the years to enumerate the requirements and desired properties of an evolved routing system in the Routing Research Group
- It is unclear that there is an immediate need to move the entire Internet to a different inter-domain routing protocol
- However, the decoupled routing architecture of the network does not prevent different routing protocols and different approaches to routing being deployed in distinct routing realms within the Internet

Questions and Comments?