🔌 APNIC

1

AS Consumption Patterns

Routing SIG 7 Sep 2005 APNIC20, Hanoi, Vietnam

Geoff Huston

AS Numbers

- The 16 bit AS number field in BGP has 64,510 available values to use in the Internet's public routing space
- Some 39,934 AS numbers have already been assigned by the RIRs – 24,576 remain in the unallocated number pool

• This number space will be exhausted at some point in the future

APNIC 🖉

32 Bit AS Number Proposal

• Use a 32 bit field for this value -draft-ietf-idr-as4bytes-10.txt describes how

-This is proposed for publication as Proposed Standard

Has been in draft state for some years. Awaiting implementation report of two implementations before proceeding to initial publication as a proposed Internet Standard

APNIC 📎

The Issue – Transition Planning

- At some point we will need to:
 - -start testing various transition plans and vendor implementations,
 - -set up a new AS number registry, and
 - -commence deployment of these extended length protocol objects in BGP
 - Existing BGP speakers do not need to change immediately
 - –BGP speakers in AS's using 4-Byte ASNs will need to deploy "4-Byte BGP"

When?

- Before we run completely out of 16 bit AS numbers
- Need to allow a lead time for testing, deployment of 4-byte AS BGP implementations and development of appropriate transition arrangements and open up the 4byte allocation registry
 - -Allow some 3-4 years to undertake this work smoothly
- So we'd like to know when we have around 4 years to go before we run out of AS numbers

APNIC

Q

APNIC

4 years before when?

- A number of views can be used to make forward projections:
 - -The growth of the number of announced AS's in the BGP routing table
 - -The rate at which AS number blocks are passed from IANA to the RIRs
 - -The rate at which RIRs undertake assignments of As's to LIRs and end users

The BGP Routing Table: Announced AS's

The BGP Routing Table: Growth Projections

Advertised — Exp Projection — Linear Projection

IANA AS block allocations to RIRs

From the IANA AS number Registry

IANA AS Allocation Projection

IANA Allocation Projections

10

RIR Assignments

Asia Pacific Network Information

Centre

11

From the RIR stats reports

RIR Allocation Projection

12

Combining these views

AS Projections 65,536 57,344 49,152 40,960 Count 32,768 24,576 16,384 8,192 Date

Combined View + Differences

Observations

- RIRs operate with an allocation buffer of an average of 5,000 numbers
- 12,741 AS numbers (39% of the assigned AS numbers) are not announced in the BGP table.
 - –Is this the result of old AS assignments falling into disuse?
 - -Or recent AS assignments being hoarded?
 - This pool creates uncertainty in AS number pool exhaustion predictions

Ø

UnAdvertised and Advertised ASes

Advertised vs UnAdvertised

UnAdvertised : Advertised ASes

Unadvertised / Advertised Ratio

Trend: UnAdvertised : Advertised Ratio

UnAdvertised / Advertised Distribution by Date

Unadvertised and Advertised ASes

APNIC

Distribution by AS Number Range

UnAdvertised / Advertised Relative Proportion by Date

Unadvertised ASs (% of Allocated) by Date

Percent towny

Allocation Date

Observations

- AS numbers age out and disappear -5% attrition rate per year
- Old (low) AS number ranges have the highest unannounced / announced ratios
- Recent assignments take some 4 months to be advertised
 - -LIR staging point factors
- Projections of AS number consumption should include a factor for Unadvertised / Advertised ratio that has a linear best fit (negative slope)

APNIC

Ø

Combining Allocation and Advertised AS Data Projections

AS Comsumption Projections

4

Selecting a best fit to the data

- A Linear growth model will have a constant first order differential
- An exponential growth model will have a linear best fit to the log of the data

 The data set for the best fit is to a smoothed (moving average) time series of the cumulative sum of RIR AS allocations

APNIC

2

Linear Model fit

25

Centre Network Information Pacific Asia

Linear Model fit

Exponential Model fit

Exponential Model fit

AS Consumption Prediction

Current AS Use Projections

- The available AS number pool will exhaust in the timeframe of late 2010 (11 August 2010) if current AS use trends continue
 - No significant reclamation in old AS number space
 - No coordinated effort to increase utilization density of AS numbers
 - Increasing consumption trend

Planning considerations (again)

 Need to allow a lead time for testing, deployment of 4-byte AS BGP implementations and development and testing of appropriate transition arrangements

-Allow some 3-4 years to undertake this smoothly

- So we'd like to know when we have around 4 years to go before we run out of AS numbers
- In the most likely consumption projection that advance planning date looks like being in <u>2006</u>

Questions?

Thank you

