

prop-030-v001: Proposal to amend APNIC IPv6 assignment and utilisation requirement policy

> Policy SIG 8 Sep 2005 APNIC20, Hanoi, Vietnam Stephan Millet, Geoff Huston

#### **The Proposal**

- 1. Add a /56 end-site allocation point (in addition to /64 and /48)
- 2. Default end-site allocation for SOHO end sites to be a /56
- 3. Evaluation for subsequent allocations to be based on an HD-Ratio value of 0.94
- 4. End-site allocation size for HD-Ratio calculation based on a /56 unit

### APNIC 📎

#### Presentation

- 1. Motivation
- 2. Impact analysis
- 3. Implementation

### APNIC 📎

4

#### 1. Motivation

 Analysis of overall lifetime and deployment size of IPv6

#### **Current Address Allocation Policies**

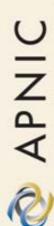
#### • RIR to ISP(LIR):

- Initial allocation: /32 (minimum)
- Subsequent allocation : /32 (minimum)
- ISP(LIR) to customer:
  - Only 1 interface ever: /128
  - Only 1 subnet ever: /64
  - Everything else: /48 (minimum)
- ISP(LIR) to each POP:

- /48

APNIC

2


#### Address Efficiency – HD=0.8

| Prefix | /48 count     | end-site count |
|--------|---------------|----------------|
|        |               |                |
| /32    | 65,536        | 7,132          |
| /31    | 131,072       | 12,417         |
| /30    | 262,144       | 21,619         |
| /29    | 524,288       | 37,641         |
| /28    | 1,048,576     | 65,536         |
| /27    | 2,097,152     | 114,105        |
| /26    | 4,194,304     | 198,668        |
| /25    | 8,388,608     | 345,901        |
| /24    | 16,777,216    | 602,249        |
| /23    | 33,554,432    | 1,048,576      |
| /22    | 67,108,864    | 1,825,677      |
| /21    | 134,217,728   | 3,178,688      |
| /20    | 268,435,456   | 5,534,417      |
| /19    | 536,870,912   | 9,635,980      |
| /18    | 1,073,741,824 | 16,777,216     |

MAPNIC VIC

### Squeezing in Bigger Numbers for Longer Timeframes

- The demand global populations:
  - Households, Workplaces, Devices, Manufacturers, Public agencies
  - Thousands of service enterprises serving millions of end sites in commodity communications services
  - -Addressing technology to last for at least tens of decades
  - -Total end-site populations of tens of billions of end sites i.e. the total is order  $10^{11}$
- The supply inter-domain routing
  - -We really may be stuck with BGP
  - -Approx 200,000 routing (RIB) entries today
  - -A billion routing (RIB) entries looks a little too optimistic
  - i.e. a total entry count is order 107
- The shoe horn
  - -Aggregation and hierarchies in the address plan



7

#### Longevity

- Shifting a technology base due to address scarcity leads to a scarcity solution, not necessarily a superior solution
- It would be preferable to provide for ample address supply over the entire anticipated technology lifecycle

-i.e. still have 'ample' addresses at the end of the lifecycle

Long-end IPv6 lifecycle estimate of 60 – 100 years

## APNIC 📎

#### Putting it together

- Aggregation and hierarchies are not highly efficient addressing structures
- The addressing plan needs to accommodate both large and small
- The addressing plan needs to be simple

(16 bit subnets) + (HD = 0.8) + (global populations) + (60-100 years) =?

#### HD Ratio for Bigger Networks

| Prefix | /48 count          | end-site count  |
|--------|--------------------|-----------------|
| /21    | 134,217,728        | 3,178,688       |
| /20    | 268,435,456        | 5,534,417       |
| /19    | 536,870,912        | 9,635,980       |
| /18    | 1,073,741,824      | 16,777,216      |
| /17    | 2,147,483,648      | 29,210,830      |
| /16    | 4,294,967,296      | 50,859,008      |
| /15    | 8,589,934,592      | 88,550,677      |
| /14    | 17,179,869,184     | 154,175,683     |
| /13    | 34,359,738,368     | 268,435,456     |
| /12    | 68,719,476,736     | 467,373,275     |
| /11    | 137,438,953,472    | 813,744,135     |
| /10    | 274,877,906,944    | 1,416,810,831   |
| /9     | 549,755,813,888    | 2,466,810,934   |
| /8     | 1,099,511,627,776  | 4,294,967,296   |
| /7     | 2,199,023,255,552  | 7,477,972,398   |
| /6     | 4,398,046,511,104  | 13,019,906,166  |
| /5     | 8,796,093,022,208  | 22,668,973,294  |
|        | 17,592,186,044,416 | 39,468,974,941  |
|        | 35,184,372,088,832 | 68,719,476,736  |
|        | 70,368,744,177,664 | 119,647,558,364 |
|        | 40,737,488,355,328 | 208,318,498,661 |

10

## APNIC 🖉

#### Multiplying it out

A possible consumption total: a simple address plan (/48s) x aggregation factor (HD = 0.8) x global populations (10\*\*11) x 60 years time frame = 50 billion - 200 billion = /1 - - /4 range

RFC 3177 (Sept 2001) estimated 178 billion global IDs with a higher HD ratio. The total "comfortable" address capacity was a /3.

#### Is this enough of a margin?

/4 consumption

- A total of 1/16 of the of the available IPv6 address space

- /1 consumption
  - A total of 1/2 of the available IPv6 address space

#### Factors / Uncertainties:

- Time period estimates (decades vs centuries)
- Consumption models (recyclable vs one-time manufacture)
- Network models (single domain vs overlays)
- Network Service models (value-add-service vs commodity distribution)
- Device service models (discrete devices vs ubiquitous embedding)
- Population counts (human populations vs device populations)
- Address Distribution models (cohesive uniform policies vs diverse supply streams)
- Overall utilization efficiency models (aggregated commodity supply chains vs specialized markets)

### If this is looking slightly uncomfortable...

then we need to re-look at the basic assumptions to see where there may be some room to shift the allocation and/or architectural parameters to obtain some additional expansion space



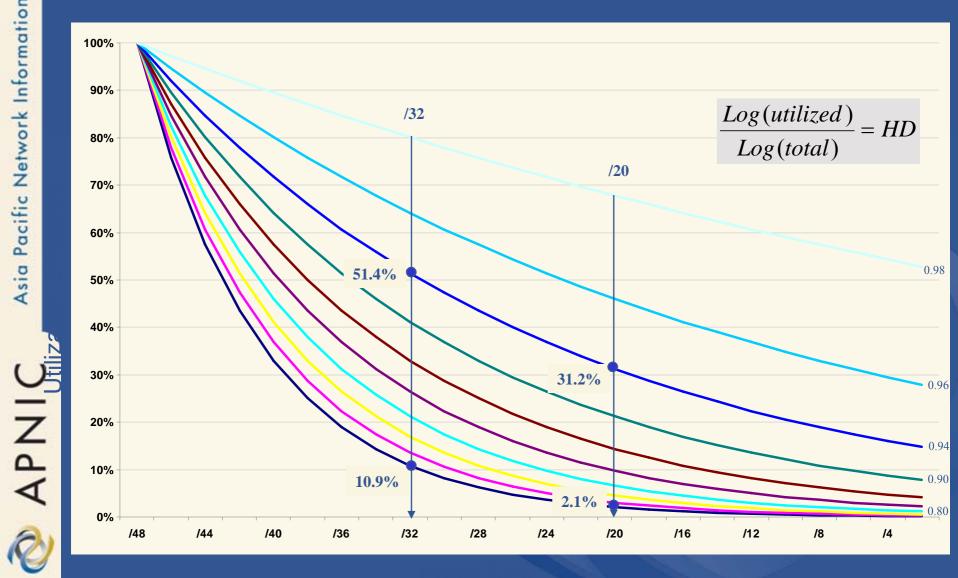
#### Where's the Wriggle Room?

- IPv6 Allocation Policies
  - -The HD-Ratio target for address utilization
  - -The subnet field size used for end-site allocation

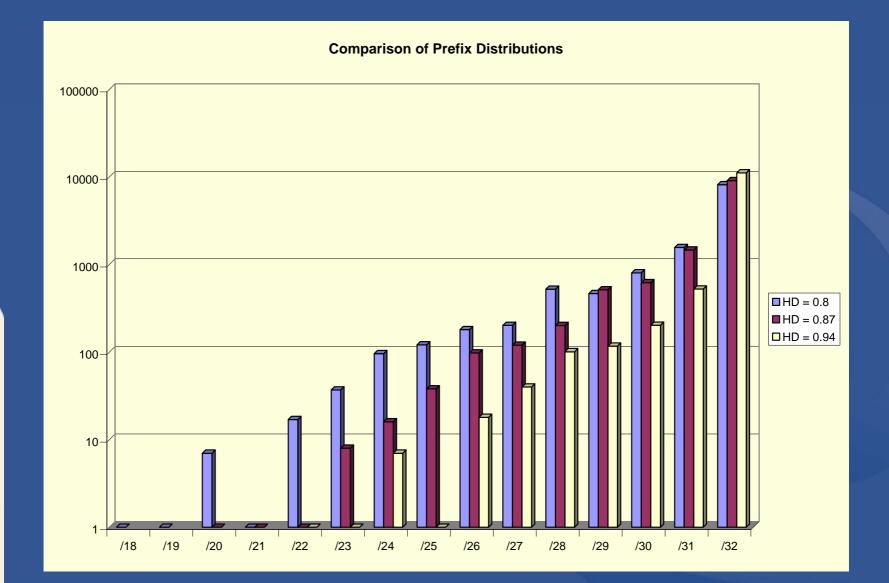
16 bits

Subnet ID

64 bits


Interface ID

- IPv6 Address Architecture
  - -64 bit Interface ID


48 bits

Global ID

#### 1. Varying the HD Ratio



### Comparison of prefix size distributions from V6 registry simulations



#### **Observations**

- 80% of all allocations are /31, /32 for HD ratio of 0.8 or higher
  - Changing the HD ratio will not impact most allocations in a steady state registry function
- Only 2% of all allocations are larger than a /27 — For these larger allocations the target efficiency is lifted from
  - 4% to 25% by changing the HD Ratio from 0.8 to 0.94
- Total 3 year address consumption is reduced by a factor of 10 in changing the HD ratio from 0.8 to 0.94

APNIC 🖉

#### What is a "good" HD Ratio to use?

- Consider <u>what is common practice</u> in today's network in terms of internal architecture
  - APNIC survey of ISPs in the region on network structure and internal levels of address hierarchy and will present the findings at APNIC 20
- Define a <u>common 'baseline' efficiency level</u> rather than an average attainable level
  - –What value would be readily achievable by large and small networks without resorting to renumbering or unacceptable internal route fragmentation?
- Consider overall longer term objectives
  - -Anticipated address pool lifetime
  - -Anticipated impact on the routing space

#### 2. The Subnet Identifier field

#### • RFC 3177: The subnet field

#### Recommendation

- /48 in the general case, except for very large subscribers
- /64 when it is known that one and only one subnet is needed by design
- **/128** when it is absolutely known that one and only one device is connecting

#### **Motivation**

- reduce evaluation and record-keeping workload in the address distribution function
- ease of renumbering the provider prefix
- ease of multi-homing
- end-site growth
- allows end-sites to maintain a single reverse mapping domain
- Allows sites to maintain a common reverse mapping zone for multiple prefixes
- Conformity with site-local structure (now unique locals)

#### **Alternatives for subnetting**

- Consider variable length subnetting
  - Allows for greater end-site address utilization efficiencies
  - Implies higher cost for evaluation and record keeping functions
  - Implies tradeoff between utilization efficiency and growth overheads
  - Likely strong pressure to simplify the process by adopting the maximal value of the range

#### **Alternatives for subnetting**

- Consider /56 SOHO default size
  - -Maintain /128 and /64 allocation points, and /48 for compound enterprise end-sites
  - -Processing and record-keeping overheads are a consideration here
  - End-site growth models for SOHO are not looking at extensive subnetting of a single provider realm
  - -Renumbering workload is unaltered
  - -Multi-homing is not looking at prefix rewriting
  - -Fixed points maintains reverse mapping zone functions
  - Allow for overall 6 7 bits of reduced total address consumption

APNIC

R

#### **3. The Interface Identifier**

- This 64 bit identifier is now well embedded in the address architecture and protocol specification for IPv6
- Considerations for change here have extensive implications in terms of overlayed services of auto-configuration and discovery functions

APNIC

2

#### Where's the Wriggle Room?

#### The HD ratio

- If using HD = 0.8 consumes 1 block of address space
- Using HD = 0.87 consumes 1/2 as much space
- Using HD = 0.94 consumes 1/10 as much space
- i.e. moving to a higher HD ratio will recover up to 3 bits here

#### The subnet field

- /56 SOHO default subnet size may alter cumulative total by <u>6 - 7</u>

/10 -- /17 total consumption given original demand estimates

APNIC 📎

Is this sufficient margin for error / uncertainty in the initial assumptions about the deployment lifetime for IPv6?

### 🖉 APNIC

#### Now or Later?

**RFC3177** 

Therefore, if the analysis does one day turn out to be wrong, our successors will still have the option of imposing much more restrictive allocation policies on the remaining 85%.

- Do we want to create early adopter rewards and late adopter restrictions?
- Should we attempt to operate with more stable policies across the anticipated technology lifecycle?

## 📀 APNIC

#### 2. Impact Analysis

- Greater confidence in address availability across anticipated technology lifecycle
- Fairness of allocations across the anticipated technology lifecycle
- Higher overheads in profiling end site allocations
- \* Potential renumbering in end site growth cases
- \* Higher overheads in network address planning for HD ratio value of 0.94

# APNIC 🖉

#### 3. Implementation

 Part of a global coordination effort across all RIRs

-Possible review of policy proposal following consideration from other RIR forums