

1

Discussion Panel Presentation

Where did all those IPv6 addresses go?

Geoff Huston APNIC 2005

It seems rather odd...

- To be considering address capacity issues in a technology that is really only ramping up.
- 128 bits allows an awesomely large pool of unique values

"If the earth were made entirely out of 1 cubic millimetre grains of sand, then you could give a unique address to each grain in 300 million planets the size of the earth" -- Wikipedia

Centre

Pacific Network Information

Asia

• This is a highly speculative exercise....

APNIC 🖉

IETF IPv6 Address Structure

RIR IPv6 Address Structure

Current Address Allocation Policies

• RIR to ISP(LIR):

- Initial allocation: /32 (minimum)
- Subsequent allocation : /32 (minimum)
- ISP(LIR) to customer:
 - Only 1 interface ever: /128
 - Only 1 subnet ever: /64
 - Everything else: /48 (minimum)
- ISP(LIR) to each POP:
 - •/48

APNIC

2

Address Efficiency – HD=0.8

Prefix	/48 count	end-site count	
/32	65,536	7,132	
/31	131,072	12,417	
/30	262,144	21,619	
/29	524,288	37,641	
/28	1,048,576	65,536	
/27	2,097,152	114,105	
/26	4,194,304	198,668	
/25	8,388,608	345,901	
/24	16,777,216	602,249	
/23	33,554,432	1,048,576	
/22	67,108,864	1,825,677	
/21	134,217,728	3,178,688	
/20	268,435,456	5,534,417	
/19	536,870,912	9,635,980	
/18	1,073,741,824	16,777,216	

Google ("subscribers millions")

- Broadband
 - •150 million total globally
 - 85 million DSL Globally
 - 12 million in US today
 - 58 million in US in 2008
- Cellular
 - Cingular: 50 million
 - Verizon: 43 million
 - Korea: 37 million
 - Russia: 20 million
 - •Asia: 560 million
 - China: 580 million subscribers by 2009

APNIC 🖉

Squeezing in Bigger Numbers for Longer Timeframes

- The demand global populations:
 - Households, Workplaces, Devices, Manufacturers, Public agencies
 - Thousands of service enterprises serving millions of end sites in commodity communications services
 - Addressing technology to last for decades
 - Total end-site populations of tens of billions of end sites i.e. the total is order (10¹¹) ?
- The supply inter-domain routing
 - We really may be stuck with BGP
 - Approx 200,000 routing (RIB) entries today
 - A billion routing (RIB) entries looks a little too optimistic
 - i.e. a total entry count is order(10⁷)
- The shoe horn
 - Aggregation and hierarchies in the address plan

MAPNIC SIN C

7

APNIC 📎

Putting it together

- Aggregation and hierarchies are not highly efficient addressing structures
- The addressing plan needs to accommodate both large and small
- The addressing plan needs to be simple

16 bit subnets + HD = 0.8 + global populations + 60 years =?

HD Ratio for Bigger Networks

Prefix	/48 count	end-site count
/21	134,217,728	3,178,688
/20	268,435,456	5,534,417
/19	536,870,912	9,635,980
/18	1,073,741,824	16,777,216
/17	2,147,483,648	29,210,830
/16	4,294,967,296	50,859,008
/15	8,589,934,592	88,550,677
/14	17,179,869,184	154,175,683
/13	34,359,738,368	268,435,456
/12	68,719,476,736	467,373,275
/11	137,438,953,472	813,744,135
/10	274,877,906,944	1,416,810,831
/9	549,755,813,888	2,466,810,934
/8	1,099,511,627,776	4,294,967,296
/7	2,199,023,255,552	7,477,972,398
/6	4,398,046,511,104	13,019,906,166
/5	8,796,093,022,208	22,668,973,294
/4	17,592,186,044,416	39,468,974,941
/3	35,184,372,088,832	68,719,476,7 <u>36</u>
/2	70,368,744,177,664	119,647,558,364
/1 1	40,737,488,355,328	208,318,498,661

9

MAPNIC 0

DINIC 🔊

Multiplying it out

A possible consumption total: a simple address plan (/48s) x aggregation factor (HD = 0.8) x global populations (10**11) x 60 years time frame = 50 billion - 200 billion = /1 - - /4 range

RFC 3177 (Sept 2001) estimated 178 billion global IDs with a higher HD ratio. The total "comfortable" address capacity was a /3.

Is this enough of a margin?

/4 consumption

• A total of 1/16 of the of the available IPv6 address space

/1 consumption

• A total of 1/2 of the available IPv6 address space

Factors / Uncertainties:

- Time period estimates (decades vs centuries)
- Consumption models (recyclable vs one-time manufacture)
- Network models (single domain vs overlays)
- Network Service models (value-add-service vs commodity distribution)
- Device service models (discrete devices vs ubiquitous embedding)
- Population counts (human populations vs device populations)
- Address Distribution models (cohesive uniform policies vs diverse supply streams)
- Overall utilization efficiency models (aggregated commodity supply chains vs specialized markets)

APNIC 🖉

If this is looking slightly uncomfortable... then we need to re-look at the basic assumptions to see where there may be some room to shift the allocation and/or architectural parameters to obtain some additional expansion space

Where's the Wriggle Room?

- IPv6 Allocation Policies
 - The HD-Ratio target for address utilization
 - The subnet field size used for end-site allocation

16 bits

Subnet ID

64 bits

Interface ID

IPv6 Address Architecture
64 bit Interface ID

48 bits

Global ID

R

APNIC

1. Varying the HD Ratio

Comparison of prefix size distributions from V6 registry simulations

15

APNIC

Observations

- 80% of all allocations are /31, /32 for HD ratio of 0.8 or higher
 - Changing the HD ratio will not impact most allocations in a steady state registry function
- Only 2% of all allocations are larger than a /27
 - For these larger allocations the target efficiency is lifted from 4% to 25% by changing the HD Ratio from 0.8 to 0.94
- Total 3 year address consumption is reduced by a factor of 10 in changing the HD ratio from 0.8 to 0.94

APNIC

What is a "good" HD Ratio to use?

- Consider <u>what is common practice</u> in today's network in terms of internal architecture
 - APNIC is conducting a survey of ISPs in the region on network structure and internal levels of address hierarchy and will present the findings at APNIC 20
- Define a <u>common 'baseline' efficiency level</u> rather than an average attainable level
 - What value would be readily achievable by large and small networks without resorting to renumbering or unacceptable internal route fragmentation?
- Consider overall longer term objectives
 - Anticipated address pool lifetime
 - Anticipated impact on the routing space

APNIC 🖉

2. The Subnet Identifier field

• RFC 3177: The subnet field

Recommendation

- /48 in the general case, except for very large subscribers
- /64 when it is known that one and only one subnet is needed by design
- **/128** when it is absolutely known that one and only one device is connecting

Motivation

- reduce evaluation and record-keeping workload in the address distribution function
- ease of renumbering the provider prefix
- ease of multi-homing
- end-site growth
- allows end-sites to maintain a single reverse mapping domain
- Allows sites to maintain a common reverse mapping zone for multiple prefixes
- Conformity with site-local structure (now unique locals)

Alternatives for subnetting

- Consider /56 SOHO default size
 - Maintain /128 and /64 allocation points, and /48 for compound enterprise end-sites
 - Processing and record-keeping overheads are a consideration here
 - End-site growth models for SOHO are not looking at extensive subnetting of a single provider realm
 - Renumbering workload is unaltered
 - Multi-homing is not looking at prefix rewriting
 - Fixed points maintains reverse mapping zone functions
 - Allow for overall 6 7 bits of reduced total address consumption

APNIC

R

Alternatives for subnetting

- Consider variable length subnetting
 - Allows for greater end-site address utilization efficiencies
 - Implies higher cost for evaluation and record keeping functions
 - Implies tradeoff between utilization efficiency and growth overheads
 - Likely strong pressure to simplify the process by adopting the maximal value of the range

APNIC

3. The Interface Identifier

- This identifier is now well embedded in the address architecture for V6
- Considerations for change here have extensive implications in terms of overlayed services of auto-configuration and discovery functions

APNIC

R

Where's the Wriggle Room?

The HD ratio

- If using HD = 0.8 consumes 1 block of address space
- Using HD = 0.87 consumes 1/2 as much space
- Using HD = 0.94 consumes 1/10 as much space
- i.e. moving to a higher HD ratio will recover 3 bits here

The subnet field

 /56 SOHO default subnet size may alter cumulative total by 6 - 7 bits

/10 -- /17 range total

Is this sufficient margin for error / uncertainty in the initial assumptions about the deployment lifetime for IPv6?

APNIC S