Discussion Panel Presentation

Where did all those IPv6 addresses go?

Geoff Huston APNIC
2005

It seems rather odd...

- To be considering address capacity issues in a technology that is really only ramping up.
- 128 bits allows an awesomely large pool of unique values
"If the earth were made entirely out of 1 cubic millimetre grains of sand, then you could give a unique address to each grain in 300 million planets the size of the earth" -- Wikipedia
- This is a highly speculative exercise....

IETF IPv6 Address Structure

Global ID
Subnet ID
Interface ID

RIR IPv6 Address Structure

48 bits

Global ID

16 bits

Subnet ID

64 bits

Interface ID

Current Address Allocation Policies

- RIR to ISP(LIR):
- Initial allocation: /32 (minimum)
- Subsequent allocation : 132 (minimum)
- ISP(LIR) to customer:
- Only 1 interface ever: /128
- Only 1 subnet ever: /64
- Everything else: /48 (minimum)
- ISP(LIR) to each POP:
-/48

Address Efficiency - HD=0.8

Prefix
/48 count end-site count

$/ 32$	65,536	7,132
$/ 31$	131,072	12,417
$/ 30$	262,144	21,619
$/ 29$	524,288	37,641
$/ 28$	$1,048,576$	65,536
$/ 27$	$2,097,152$	114,105
$/ 26$	$4,194,304$	198,668
$/ 25$	$8,388,608$	345,901
$/ 24$	$16,777,216$	602,249
$/ 23$	$33,554,432$	$1,048,576$
$/ 22$	$67,108,864$	$1,825,677$
$/ 21$	$134,217,728$	$3,178,688$
$/ 20$	$268,435,456$	$5,534,417$
$/ 19$	$536,870,912$	$9,635,980$
$/ 18$	$1,073,741,824$	$16,777,216$

Google ("subscribers millions")

- Broadband
- 150 million total globally
- 85 million DSL Globally
- 12 million in US today
- 58 million in US in 2008
- Cellular
-Cingular: 50 million
-Verizon: 43 million
- Korea: 37 million
-Russia: 20 million
- Asia: 560 million
- China: 580 million subscribers by 2009

Squeezing in Bigger Numbers for Longer Timeframes

- The demand - global populations:
- Households, Workplaces, Devices, Manufacturers, Public agencies
- Thousands of service enterprises serving millions of end sites in commodity communications services
- Addressing technology to last for decades
- Total end-site populations of tens of billions of end sites
i.e. the total is order (10^{11})?
- The supply - inter-domain routing
- We really may be stuck with BGP
- Approx 200,000 routing (RIB) entries today
- A billion routing (RIB) entries looks a little too optimistic i.e. a total entry count is order(107)
- The shoe horn
- Aggregation and hierarchies in the address plan

Putting it together

- Aggregation and hierarchies are not highly efficient addressing structures
- The addressing plan needs to accommodate both large and small
- The addressing plan needs to be simple

16 bit subnets + HD = $0.8+$ global populations +60 years $=$?

HD Ratio for Bigger Networks

Prefix	$/ 48$ count	end-site count
$/ 21$	$134,217,728$	$3,178,688$
$/ 20$	$268,435,456$	$5,534,417$
$/ 19$	$536,870,912$	$9,635,980$
$/ 18$	$1,073,741,824$	$16,777,216$
$/ 17$	$2,147,483,648$	$29,210,830$
$/ 16$	$4,294,967,296$	$50,859,008$
$/ 15$	$8,589,934,592$	$88,550,677$
$/ 14$	$17,179,869,184$	$154,175,683$
$/ 13$	$34,359,738,368$	$268,435,456$
$/ 12$	$68,719,476,736$	$467,373,275$
$/ 11$	$137,438,953,472$	$813,744,135$
$/ 10$	$274,877,906,944$	$1,416,810,831$
$/ 9$	$549,755,813,888$	$2,466,810,934$
$/ 8$	$1,099,511,627,776$	$4,294,967,296$
$/ 7$	$2,199,023,255,552$	$7,477,972,398$
$/ 6$	$4,398,046,511,104$	$13,019,906,166$
$/ 5$	$8,796,093,022,208$	$22,668,973,294$
$/ 4$	$17,592,186,044,416$	$39,468,974,941$
$/ 3$	$35,184,372,088,832$	$68,719,476,736$
$/ 2$	$70,368,744,177,664$	$119,647,558,364$
$/ 1$	$140,737,488,355,328$	$208,318,498,661$

Multiplying it out

A possible consumption total: a simple address plan (/48s)
x aggregation factor ($\mathrm{HD}=0.8$)
x global populations (10 **11)
x 60 years time frame
= 50 billion - 200 billion
= /1 -- /4 range

RFC 3177 (Sept 2001) estimated 178 billion global IDs with a higher HD ratio. The total "comfortable" address capacity was a 3.

Is this enough of a margin?

/4 consumption

- A total of $1 / 16$ of the of the available IPv6 address space
/1 consumption
- A total of $1 / 2$ of the available IPv6 address space

Factors / Uncertainties:

- Time period estimates (decades vs centuries)
- Consumption models (recyclable vs one-time manufacture)
- Network models (single domain vs overlays)
- Network Service models (value-add-service vs commodity distribution)
- Device service models (discrete devices vs ubiquitous embedding)
- Population counts (human populations vs device populations)
- Address Distribution models (cohesive uniform policies vs diverse supply streams)
- Overall utilization efficiency models (aggregated commodity supply chains vs specialized markets)

If this is looking slightly uncomfortable... then we need to re-look at the basic assumptions to see where there may be some room to shift the allocation and/or architectural parameters to obtain some additional expansion space

Where's the Wriggle Room?

-IPv6 Allocation Policies

- The HD-Ratio target for address utilization
- The subnet field size used for end-site allocation
- IPv6 Address Architecture - 64 bit Interface ID 16 bits 64 bits

1. Varying the HD Ratio

Comparison of prefix size distributions from V6 registry simulations

Comparison of Prefix Distributions

Observations

- 80% of all allocations are /31, /32 for HD ratio of 0.8 or higher
- Changing the HD ratio will not impact most allocations in a steady state registry function
- Only 2% of all allocations are larger than a $/ 27$
- For these larger allocations the target efficiency is lifted from 4% to 25% by changing the HD Ratio from 0.8 to 0.94
- Total 3 year address consumption is reduced by a factor of 10 in changing the HD ratio from 0.8 to 0.94

What is a "good" HD Ratio to use?

- Consider what is common practice in today's network in terms of internal architecture
- APNIC is conducting a survey of ISPs in the region on network structure and internal levels of address hierarchy and will present the findings at APNIC 20
- Define a common 'baseline' efficiency level rather than an average attainable level
- What value would be readily achievable by large and small networks without resorting to renumbering or unacceptable internal route fragmentation?
- Consider overall longer term objectives
- Anticipated address pool lifetime
- Anticipated impact on the routing space

2. The Subnet Identifier field

- RFC 3177: The subnet field

Recommendation

- /48 in the general case, except for very large subscribers
- /64 when it is known that one and only one subnet is needed by design
- /128 when it is absolutely known that one and only one device is connecting

Motivation

- reduce evaluation and record-keeping workload in the address distribution function
- ease of renumbering the provider prefix
- ease of multi-homing
- end-site growth
- allows end-sites to maintain a single reverse mapping domain
- Allows sites to maintain a common reverse mapping zone for multiple prefixes
- Conformity with site-local structure (now unique locals)

Alternatives for subnetting

- Consider /56 SOHO default size
- Maintain /128 and /64 allocation points, and /48 for compound enterprise end-sites
- Processing and record-keeping overheads are a consideration here
- End-site growth models for SOHO are not looking at extensive subnetting of a single provider realm
- Renumbering workload is unaltered
- Multi-homing is not looking at prefix rewriting
- Fixed points maintains reverse mapping zone functions
- Allow for overall 6-7 bits of reduced total address consumption

Alternatives for subnetting

- Consider variable length subnetting
- Allows for greater end-site address utilization efficiencies
- Implies higher cost for evaluation and record keeping functions
- Implies tradeoff between utilization efficiency and growth overheads
- Likely strong pressure to simplify the process by adopting the maximal value of the range

3. The Interface Identifier

- This identifier is now well embedded in the address architecture for V6
- Considerations for change here have extensive implications in terms of overlayed services of auto-configuration and discovery functions

Where's the Wriggle Room?

The HD ratio

- If using HD = 0.8 consumes 1 block of address space
- Using HD $=0.87$ consumes $1 / 2$ as much space
- Using HD $=0.94$ consumes $1 / 10$ as much space
- i.e. moving to a higher HD ratio will recover 3 bits here
The subnet field
- /56 SOHO default subnet size may alter cumulative total by 6-7 bits
/10 -- /17 range total
Is this sufficient margin for error / uncertainty in the initial assumptions about the deployment lifetime for IPv6?

