IPv6 HD Ratio

ARIN Public Policy Meeting April 2005

Geoff Huston
APNIC

Background

- Current IPv6 Address Allocation policies refer to the use of the Host Density Ratio as a metric for 'acceptable' utilization of address space
- Original Def'n: RFC 1715
- Re-stated Def'n: RFC 3194
- Current IPv6 Address Allocation policies use an HDRatio value of 0.8 as an allocation threshold value
-Why 0.8?
- This value is based on a small number of case studies described in RFC 1715 - no further analysis of the underlying model or the selection of an appropriate threshold value as an IP network efficiency metric has been published
- Does this HD-Ratio value provide "reasonable" outcomes in terms of address utilization?

The HD Ratio Metric

- IPv4 fixed 80\% Density

Host-Count / Address-Count = 0.8

- IPv6 0.8 HD Ratio
$\log ($ Host - Count $) / \log ($ Address - Count $)=0.8$

Under the HD-Ratio, the overall address utilization efficiency level falls exponentially in line with the size of the address block. Large allocations have a very small density threshold, while smaller allocations have a much higher threshold.

IPv4 / IPv6 Allocation equivalence table

Host Count	80%	$H D=0.8$
End Customer Size	IPv4 Allocation	IPv6 Allocation
205	124	132
410	123	132
819	122	132
1638	121	132
3277	120	132
7131	118	132
12416	118	131
21618	117	130
37640	116	129
65536	115	128
114104	114	127
198668	114	126
345901	113	125
602248	112	124
1048576	111	123
1825676	110	122
3178688	110	121
5534417	19	120
9635980	18	119
16777216	17	118

IPv6 Address Efficiency Table

IPv6	Block Size	$\mathrm{HD}=0.8$	Address
Prefix	(148s)	Host Count	Efficiency
132	65,536	7,132	11\%
131	131,072	12,417	9\%
130	262,144	21,619	8\%
129	524,288	37,641	7\%
128	1,048,576	65,536	6\%
127	2,097,152	114,015	5\%
126	4,194,304	198,668	5\%
125	8,388,608	345,901	4\%
124	16,777,216	602,249	4\%
123	33,554,432	1,048,576	3\%
122	67,108,864	1,825,677	3\%
121	134,217,728	3,178,688	2\%
120	268,435,456	5,534,417	2\%
119	536,870,912	9,635,980	2\%
118	1,073,741,824	16,777,216	2\%

Using a fixed 16 bit subnet length

Modelling the HD Ratio

- Does this HD Ratio value produce reasonable outcomes?
-The approach reported here is to look at recent IPv4 allocation data, and simulate an equivalent IPv6 registry operating user a similar address demand profile

IPv6 Registry simulation exercise

- Use recent RIR IPv4 allocation data to create a demand model of an IPv6 address registry
- Assume a sequence of IPv6 transactions based on a demand model derived from the sequence of recorded IPv4 allocations
- Convert IPv4 to IPv6 allocations by assuming an equivalence of an IPv4 end-user-assignment of a /32 with an IPv6 end-user-assignment of a /48
- IPv4 uses a constant host density of 80% while IPv6 uses a HD-Ratio of 0.8
- Use a minimum IPv6 allocation unit of a /32
- Assume IPv4 allocation timeframe mean of 12 months

Allocation Simulation results

Registry Allocations

Prefix Distribution

Prefix Length Distribution HD $=0.8$

HD Ratio Observations

- One interpretation of the HD Ratio is that it corresponds to a network model where an additional component of internal network hierarchy is introduced for each doubling of the address block size
- A HD Ratio of 0.8 corresponds to a network with a per-level efficiency of 70%, and adding an additional level of hierarchy as the network increases in size by a factor of 8

Hierarchical Network Model

Network

Region Region Region Product Product Product POP POP POP

Customer Customer Customer

Comparison of HD Ratio and Compound Hierarchy

HD vs Stepped

Interpreting the HD Ratio

- For a /32 allocation the 0.8 HD ratio is comparable to 6 levels of internal hierarchy with 70\% efficiency at each level
- For a /24 this corresponds to an internal network hierarchy of 9 levels, each at 70\% efficiency
- Altering the HD Ratio effectively alters comparable model rate of growth in internal levels of network hierarchy

$H D=0.94$

- This corresponds to a network model that uses base efficiency of 0.75 at each level of internal network structure, with a new level of hierarchy added for each additional 5 bits of address prefix length (x 32)

Varying the HD Ratio

Varying the HD Ratio - Detail

Address Efficiency - I32 through to /18

Allocation Simulation $-\mathrm{HD}=0.94$

Registry Allocations (HD = 0.94)

Prefix Distribution - HD = 0.94

Prefix Length Distribution HD $=0.94$

Comparison of prefix size distributions

Comparison of Prefix Distributions

Observations

- 80% of all allocations are /31 and /32 for HD ratio of 0.8 or higher
- Changing the HD ratio will not impact most allocations in a steady state registry function
- Only 2% of all allocations are larger than a /27
- For these larger allocations the target efficiency is lifted from 4% to 25% by changing the HD Ratio from 0.8 to 0.94 (25% is equivalent to 5 levels of internal hierarchy each with 75% efficiency)
- Total 3 year address consumption is reduced by a factor of 10 in changing the HD ratio from 0.8 to 0.94

What is a "good" HD Ratio to use?

- Need to consider what is common practice in today's network in terms of internal architecture
- APNIC is conducting a survey of ISPs in the region on network structure and internal levels of address hierarchy and will present the findings at APNIC 20
- Need to define a common 'baseline' efficiency level rather than an average attainable level
- What value would be readily achievable by large and small networks without resorting to renumbering or internal route fragmentation?
- Need to consider overall longer term objectives
- Anticipated address pool lifetime
- Anticipated size of the routing space

Thank you

Questions?

