IP Technology

Geoff Huston

Overview

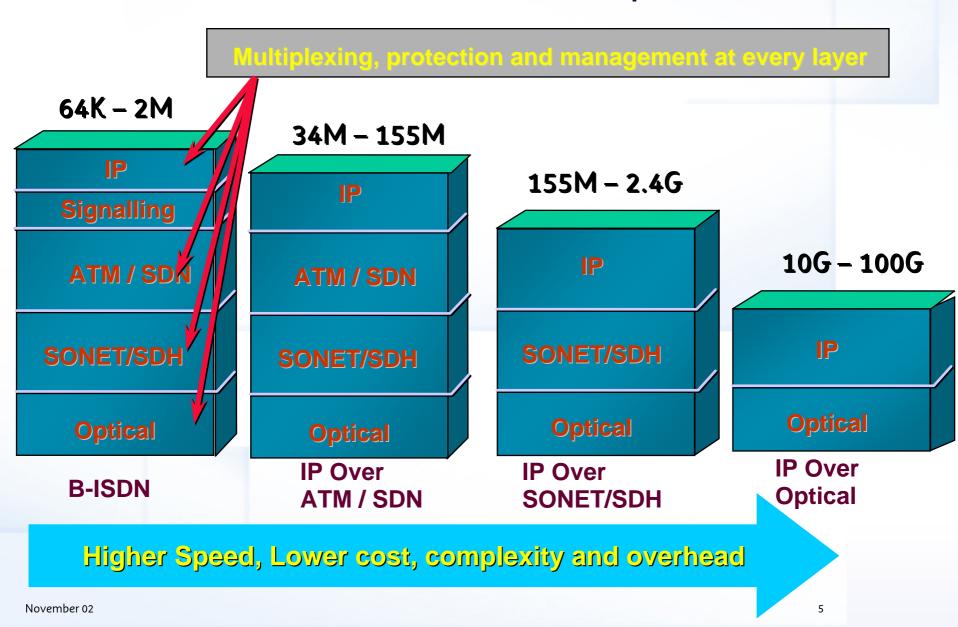
- A quick skate across the top of an entire suite of technology-based issues that exist within the IP architecture:
 - IP Carriage
 - IP, TCP and UDP
 - IP Addresses
 - IP V6
 - DNS
 - IP Routing
 - Network Management
 - VPNs
 - MPLS
 - VOIP
 - Wireless

IP Carriage Architectures

Issues in designing an efficient high speed IP backbone network

Carriage Networks and IP packets

- Each speed shift places greater functionality into the IP packet header and requires fewer services from the carriage system
- IP networks need to get faster, not smarter


NETWORK

real time bit streams network data clock end-to-end circuits fixed resource segmentation network capacity management single service platform

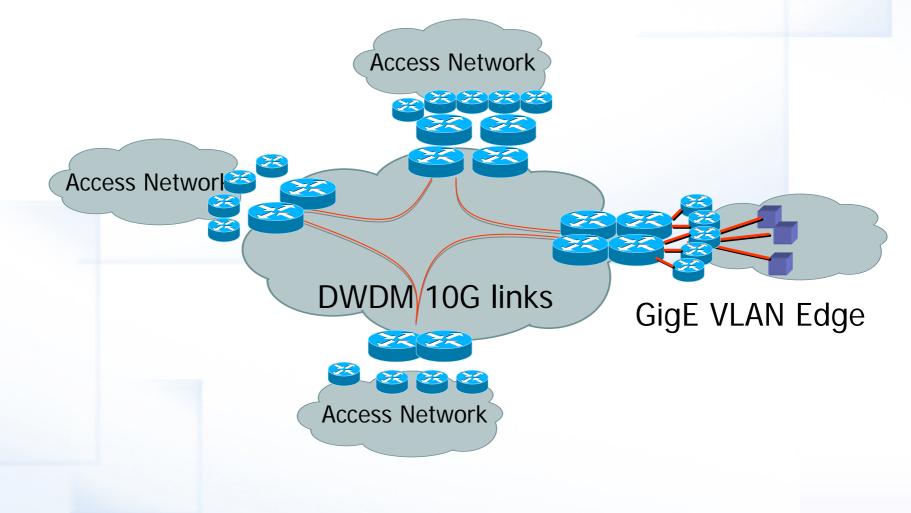
PACKET

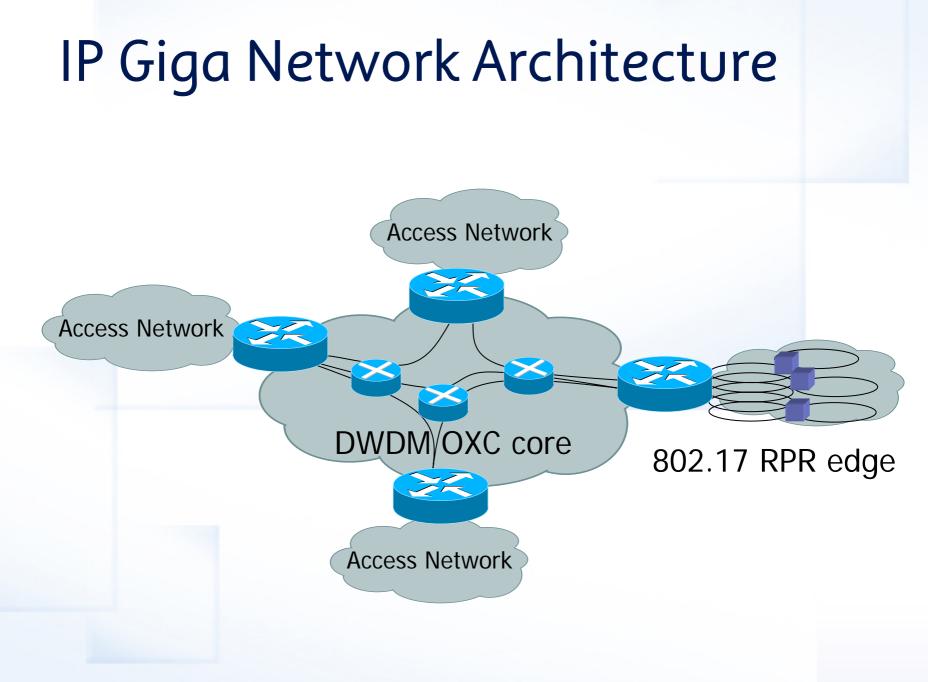
- asynchronous data packet flows
- → per-packet preamble data clock
- address headers and destination routing
- → variable resource segmentation
- → adaptive dynamic utilization
 - multi-service payloads

The Evolution of the IP Transport Stack

Engineering Internet Backbone Networks

- Data Networks were originally designed as overlays on the PSTN network
- As the Internet evolved its demands for carriage capacity have increased more than one million-fold
 - This massive increase in volume requires rethinking how to efficiently build data networks
- This has lead to engineering data networks without an underlying PSTN
 - Such IP trunk networks are very recent developments to the carrier engineering domain
- Current High Speed IP platform architectures consist of:
 - DWDM fibre systems
 - 10G optical channels
 - 10GiGE Ethernet framing
 - Multi-router POPs
 - Load distribution through topology design and ISIS link metrics


Faster Core IP Networks


- From Silicon to Photons
 - Reduce the number of optical / electrical conversions in order to increase network speed
- The optical switched backbone
 - Gigabit to Terabit network systems using multi-wavelength optical systems
 - Single hop routing to multi-hop optical Traffic-Engineering control planes

A whole new Terminology Set: Gigabit Networking Technology Elements

- Ethernet packet frames
 - Faster Ethernet: 100mFE, GigE, 10GigE
 - VLANs: 802.1Q
 - Rings (802.17) and T-Bit Fast Switches
- Optical Transports
 - CWDM / DWDM
 - Wavelength-Agile Optical Cross-Connect control systems with GMPLS controls
- Traffic Engineering
 - Rapid Response, Rapid Convergence IP Routing Systems
 - MPLS to maintain path vector sets

Current High Speed IP Network Architectures

IP Architecture

- IP is a simple end-to-end overlay level 3 datagram protocol
 - End-to-end header semantics
 - No signalled connection between link level conditions and transport services
 - Universal abstraction of a common simple packet transmission service that has been adapted to operate efficiently over

wires, modems, Frame Relay, ATM, Ethernet, broadcast radio, packet radio, satellite circuits, SDH, fibre, pigeons

Yes, Pigeons!

- RFC 1149 "Standard for the transmission of IP datagrams on avian carriers"
- RFC 2549 "IP over Avian Carriers with Quality of Service"
- Implemented in 2001 in Norway
 - http://www.blug.linux.no/rfc1149/

Implementation of BBI2 (RFC 1149 Firewalling)

Bert pulled an all-nighter to implement the ICPM_TRIANGULATE message(top left), preparing the firewall equipment (top right) and presenting the somewhat shocking result of filtering 63 packets to the working group (bottom left).

Bert regrets dropping a wrong packet (bottom right).

Reference:

[BBI2]: RFC1149 Firewalling

IP Architecture

- TCP and UDP are DIFFERENT end-to-end transport services
 - UDP is an unreliable datagram service
 - TCP is a flow-controlled reliable stream service
 - Most IP payload is TCP (95% by volume)
 - Real-time services use a UDP base
- UDP and TCP have a widely different operating model
 - TCP attempts to saturate network resources using a cooperative model of congestion limit probing (network-clocking of data transfer)
 - UDP uses an external clocking model that is normally impervious to network conditions
 - The fit is often not entirely comfortable
 - hence the QoS effort to attempt to impose some level of network-based arbitration

IP Architecture Pressures

- Now under some pressure
 - QoS signalling between application and network
 - NATS, ALGs, intercepting caches break end-to-end semantic with middleware
 - IPSEC, SIP, HTTPS tunnels, IPV6 tunnelling (...) now being used to 2nd guess middleware in order to recreate end-to-end associations
 - Transport services under pressure to be more aggressive in recovery vs making UDP more 'reliable'
 - Identity semantics all confused with application, end-to-end and network level identity assertions
- This new architecture no longer simple, scaleable or efficient

Addresses -- How to get here from there

- Addresses provide information on how to locate something, e.g., what route to take from here to there.
- Internet addresses combine
 - a routing portion, known as the network part
 - a name portion known as the host part

IP Addresses

- IP uses overloaded semantics of an "address"
 - AN IP address is used as an IDENTITY, a LOCATOR and a ROUTING ELEMENT
 - These are separable concepts:
 - What is the best PATH to reach YOUR current LOCATION?
 - IP makes no distinction at present between these three roles
 - Consequent serious issues with Mobility, NATs, SIP, URLs, Security
 - This is common to both V4 and V6

IP V4 Addresses

- V4 remains the overwhelmingly dominant protocol choice
 - 32 bit (4G) address space
 - 50% allocated
 - 25% deployed
 - 5%- 10% utilization density achieved
 - Consumption at a rate of 32M p.a.
 - Anticipated lifespan of a further 10 15 years in native mode
 - Indefinite lifespan in NAT mode

IPV6

- "IP with larger addresses"
- Address space requirements are no longer being easily met by IPv4
- This is an issue for high volume deployments including:
 - GPRS mobile
 - 3G Mobile
 - WebTV
 - Pocket IP devices
- IPV6 appears to offer reasonable technology solutions that preserve IP integrity, reduce middleware dependencies and allow full end-to-end IP functionality
- Issues are concerned with co-existence with the IPv4 base and allowing full inter-working between the two protocol domains

IPv6 Strengths

- Larger addresses to match
 - consumer electronics
 - disposable passive devices (labels and tags)
 - automated conversation and distributed control functions

- Playback Zoom
- i.LINK (IEEE1394) IN / OUT
- Video IN / OUT
- S-Video IN / OUT
- Audio IN / OUT (Stereo)
- USB Terminal
- Intelligent Accessory Shoe
- Headphone Jack (Stereo)

NPQM91: 370 min

Network Function

- Bluetooth Standard: Ver 1.1
- Email: SMTP, POP3
- Web Browser
- HTML: HTML3.2, Frame. JavaScript, SSL (V2/3)
- Image: GIF, JPEG, XBM, PNG

IPv6 Weaknesses

- Not sufficiently "different" from IPv4
 - No 'value add" to fuel investment in transition
 - Reuses large amounts of V4 infrastructure to there's an expectation of identical outcomes
 - http://www.kame.net
- Not sufficiently "similar" to IPv4
 - The coupling of address and identity functions in the IP architecture makes transparent address translation a challenge
 - Referential integrity issues is the DNS protocol independent or loosely/tightly coupled between V6 and V4
- Still working on the technology
 - Address architecture
 - Site-Local addressing
 - Multi-homing
 - Mobility
 - Transition mechanisms

V4 and V6 – direction?

- No change and no widespread adoption of V6 yet
- Most growth in IP is being absorbed by NATs and DHCP.
- Likely deployment model is in vendor-push walled garden deployments with application-specific gateway portals into and out of the V6 domain
- The next 2 years appear to be a critical period for V6 deployment
- The hype surrounding V6 is unhelpful
 - V6 is IP with larger addresses nothing more
- The lack of production high speed routing code from vendors is frustrating
 - Noone wants to deploy 'experimental' code!

Domain Names

- Hierarchical name space with an associated distributed caching database (the "DNS")
- The DNS:
 - Maps names to IP addresses
 - Maps IP addresses to names
 - Maps service names to other names
 - Maps E.164 numbers to service addresses
 - Can contain unstructured text elements
 - Key signatures
 - Identity

Domain Name Issues

- Single root of the hierarchy
- Control of root by USG
- Short-cut name spaces
- Multi-lingual DNS
- Security and resilience
- Alternative Identity name space (DNSSEC + Dynamic Update)
- Trademarks and IPR issues
- Generic TLDs

Routing

- IP uses a de-coupled routing architecture
 - Routing architectures can (and do) change without disrupting the service platform
- Two level hierarchy
 - Interior routing to undertake topology maintenance and best path identification
 - Exterior routing to undertake connectivity maintenance and conformance to external policies

Routing – Interior Routing

- Predominant use of SPF algorithms for topology maintenance
 - OSPF
 - IS-IS
- Overlay external routes with iBGP
- Little evidence of takeup of MPLS-based approaches

Routing – Exterior Routing

- BGP is the protocol of choice for exterior routing
 - Operator base highly familiar with BGP characteristics and capabilities
 - Easily disrupted
 - Poor security model with massive levels of distributed trust and no coupled authentication mechanisms
 - Poor scaling performance
 - Highly unstable (oscillation and damping)
 - Unresponsive to dynamic changes
 - No TE / QoS Support
 - And none likely!
 - No alternative to field!

Network Management

- SNMP-based architecture
 - In-band management model
 - Query-response polling architecture using a structured set of query variables
 - Problems:
 - Insecure
 - Vulnerable implementations
 - Too simple?
 - Efforts underway to create a successor architecture to SNMP to incorporate better security, lock and confirm actions (mutex plus confirm), shared management state

- Sharing of a common base packet switching platform by a collection of IP networks
- Issues of integrity of the platform and integrity of the offered IP service to the VPN client
- Critical areas of technology development include
 - MPLS Multi-Protocol Label Switching
 - MPR Multi-Protocol Routing
 - VLANS Virtual LAN Packet Frame formats
 - IPSEC end-to-end IP authentication and encryption services
 - QoS various forms of Quality of Service network mechanisms
 - PPP / MPLS / VLAN / VC inter- working the enterprise-wide VPN service model
 - Dynamic VPN technologies secure edge-based discovery tools

MPLS

- Where ATM collides with IP
- MPLS is an encapsulation technology that adds a network-specific egress label of a packet, and then uses this for each hop-by-hop switching decision
- Originally thought of as a faster switching technology than IP-level switching. This is not the case
- Now thought of as a more robust mechanism of network-specific encap than <IP in IP>, or <IP in L2TP in IP>
- Has much of the characteristics of a solution looking for a problem:
 - IP-VPNs? IP-TE? IP-QoS? Multi-protocol variants of these?

VOIP

- In theory voice is just another IP application
- In practice it's a lot harder than that
- Issues of Quality and Signalling
- Quality
 - Voice is a low jitter, low loss, low latency, constant load application
 - TCP is a high jitter, medium loss, variable load transport
 - The problem is to get VOIP into the network without it being unduly impaired by TCP flows
 - Either overprovision the network and minimize the impacts or
 - differentiate the traffic to the network and allow the network elements to treat VOIP packets differently from TCP packets

VOIP

- How can you map the E.164 telephone number space into the Internet environment?
 - Allow VOIP gateways to operate autonomously as an agent of the caller rather than the reciever
 - ENUM technology to use the DNS to map an E.164 number to a URL service location
 - Use the DNS to map the URL service location to an IP address of the service point
 - What happens with NATs?

Wireless

- In theory
 - IP makes minimal assumptions about the nature of the transmission medium. IP over wireless works well.
- In practice
 - high speed TCP over wireless solutions only works in environments of low radius of coverage and high power
 - TCP performance is highly sensitive to packet loss and extended packet transmission latency

Wireless

- 3G IP-based wireless deployments will not efficiently interoperate with the wired IP Internet
- Likely 3G deployment scenario of wireless gateway systems acting as transport-level bridges, allowing the wireless domain to use a modified TCP stack that should operate efficiently in a wireless environment
- 802.11 is different
- Bluetooth is yet to happen (or not)

IP Extensions & Refinements

- IP Multicast technologies
 - Extension of IP into support of common broadcast / conferencing models
 - Large-scale multicast
 - Small-scale multicast conferencing
 - No widescale deployment as yet
- IP Mobility
 - IP support of mobility functions for mobile hosts and mobile subnets
 - Difference between nomadic operation and roaming operation
- IP QoS
 - IP support of distinguished service responses from the network
 - Per-flow responses or per-traffic class response models exist
 - No real uptake of either approach so far