Secure Internet Solutions

Geoff Huston Chief Scientist, Internet Telstra

User Beware

 I am not a security expert
I am a simple consumer of security solutions as a user of Internet-based secure services and applications

User Beware

No security system is absolute

- All security measures mitigate risk, not eliminate it
- Security measures obey the law of diminishing return
- Determine what level of risk is acceptable
- Constantly review risk assumptions

The Issues

Risks and vulnerabilities

- DNS hijacking
- Cache hijacking
- Routing hijacking
- Identity hijacking
- Session hijacking
- Session monitoring

The Internet's base trust model is very basic

 Security is an overlay, not an intrinsic property of the network itself

Secure Solutions

What are the problems to be addressed?

- Identity authentication
- Application authentication
- Third party intervention
 - monitoring
 - awareness
 - alteration
 - disruption or denial
 - hijacking

Security has many dimensions

 Secure end-to-end IP conversations
Secure application-to-application conversations
Authenticated communications
Secure transport systems
Secure VPNs

♦ IPSEC + IKE

- End-to-End transport
- Gateway-to-Gateway transport
- Includes header and payload checksum
- Includes payload encryption
- Compute load is high
- IKE is not absolutely robust (evidently)
- Cannot tolerate NATs in the transport path
- Used in CPE devices for overlay VPNs

TLS (HTTPS)

- Application-level payload encryption
- Weak key exchange model
- Prevents interception monitoring of the application traffic
- No authentication

SSH

- Secure telnet tunnels
- Secure encrypted conversation between a roaming satellite and a SSH server
- Supports tunnels for application access (using NAT at the server)
- Used to support extensions of corporate access into public Internet environments
 - Road Warrior tools

Public Key Infrastructure (PKI)

- Public / Private key infrastructure
- Allows for third party validation of identity of the end systems
- Allows for use of keys to perform encryption
- Keys normally associated with the host system, not the user of the host

Secure Transport Systems
Data-link layer encryption

 e.g. WEP for Wi-FI

Caveat regarding potential regulatory requirements for clear payload interception
Not end-to-end

No authentication

Secure VPNs

- Overlay VPNs with CPE-to-CPE IPSEC tunnels
 - Issues with TCP MTU negotiation
 - Issues with performance
 - Issues with key management
 - Vendor equipment availableCommon VPN solution

Secure VPNs

2547bis MPLS VPNS

- Use MPLS to switch from PE to PE across the provider core
- Further encryption of payload not strictly necessary (VC-style functionality)
- Requires explicit provider support
- Inter-provider interoperability limited

Secure Roaming

IPSEC tunnel as overlay on dial PPP access

SSH tunnel as overlay on access

Secure Application Services

Certificates are excellent

- Requires initial overhead on certificate exchange
- Good browser support
- But not portable across hosts

User/password + TLS is more flexible, but at a cost of higher vulnerability

Discussion

Security is an overlay across the Internet, not an intrinsic part of the network itself

Many security incidents are evidently the outcome of social rather than technical engineering