Tracking the Internet's BGP Table

Geoff Huston Telstra

January 2001

Methodology

The BGP table monitor uses a router at the boundary of AS1221 which has a default-free eBGP routing table

- Capture the output from "show ip bgp" every hour
- 2. Perform analysis of the data (and then discard the raw dump!)
- 3. Update reports at www.telstra.net/ops/bgp

Phases of Growth

Growth Characteristics

Short term route fluctuation is an absolute value (not a % of total routes) of 1,000 – 2,000 routes

Routed Address Space

12 months of data does not provide clear longer growth characteristic

Routed Address Space (/8 Corrected)

Average size of a routing table entry

The BGP routing tale is growing at a faster rate than the rate of growth of announced address space

Number of AS's in the table

AS Number Use - Extrapolation

AS Number Usage Projection

Number of distinct AS Paths

Observations for 99/00

- Low growth in the number of routed addresses
 0.6% growth / month (7% / year)
- <u>High growth</u> in number of route advertisements
 3% growth / month (42% / year)
- <u>High growth</u> in number of AS's
 3.5% growth / month (51% / year)

Multi-homing on the rise?

 Track rate of CIDR "holes" – currently 40% of all route advertisements are routing 'holes"

Prefix Growth – Aug 00 to Oct 00

	/16	6553	->	6670	absolute	growth	=	117,	relative	=	1.79%
	/17	889	->	936	absolute	growth	=	47,	relative	=	5.29%
	/18	1763	->	1884	absolute	growth	=	121,	relative	=	6.86%
	/19	5704	->	5984	absolute	growth	=	280,	relative	=	4.91%
	/20	3423	->	3854	absolute	growth	=	431,	relative	=	12.59%
/	/21	3621	->	3856	absolute	growth	=	235,	relative	=	6.49%
	/22	5415	->	5870	absolute	growth	=	455,	relative	=	8.40%
	/23	7298	->	7788	absolute	growth	=	490,	relative	=	6.71%
	/24	49169	->	52449	absolute	growth	=	3280,	relative	=	6.67%
	/25	208	->	436	absolute	growth	=	228,	relative	=	109.62%
	/26	334	->	606	absolute	growth	=	272,	relative	=	81.44%
	/27	469	->	667	absolute	growth	=	198,	relative	=	42.22%
1/	/28	357	->	452	absolute	growth	=	95,	relative	=	26.61%
	/29	579	->	764	absolute	growth	=	185,	relative	=	31.95%
	/30	746	->	1026	absolute	growth	=	280,	relative	=	37.53%

The largest significant relative growth in recent times is /20, tracking the allocation policy change in the RIRs

While the absolute number is low, the largest relative growth is in /25 prefixes, and /25 to /30 represent the greatest area of prefix growth in relative terms

Prefix Distribution

/24 is the predominant routing prefix

Prefix Growth Aug 00 – Jan 01

% growth Aug 00 – Jan 01

Conjectures....

BGP table size will continue to rise exponentially

- Multi-homing at the edge of the Internet is on the increase
- The interconnectivity mesh is getting denser
 - The number of AS paths is increasing faster than the number of AS's
 - Average AS path length remains constant
- AS number deployment growth will exhaust 64K AS number space in August 2005 if current growth trends continue

More conjecturing....

- Inter-AS Traffic Engineering is being undertaken through routing discrete prefixes along different paths -- globally (the routing mallet!)
- RIR allocation policy (/19, /20) is driving one area of per-prefix length growth in the aggregated prefix area of the table
- BUT NAT is a **very** common deployment tool
- NAT, multihoming and Traffic Engineering is driving even larger growth in the /24 prefix area

And while we are having such a good time conjecturing...

- Over 12 months average prefix length in the table has shifted from /18.1 to /18.5
- More noise (/25 and greater) in the table, but the absolute level of noise is low (so far)
- Most routing table flux is in the /24 to /32 prefix space – as this space gets relatively larger so will total routing table flux levels
 - "Flux" here is used to describe the cumulative result of the withdrawals and announcements

This is fun – lets have even more conjectures...

- CIDR worked effectively for four years, but its effective leverage to dampen route table growth and improve table stability has now finished
- Provider-based service aggregation hierarchies as a model of Internet deployment structure is more theoretic than real these days
 - i.e. provider based route aggregation is leaking like a sieve!